產品詳細資料

Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Space
Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Space
CFP (W) 16 69.319 mm² 10.3 x 6.73
  • Cascading Circuitry Provided Internally
  • Synchronous Operation
  • Individual Preset to Each Flip-Flop
  • Fully Independent Clear Input
  • Cascading Circuitry Provided Internally
  • Synchronous Operation
  • Individual Preset to Each Flip-Flop
  • Fully Independent Clear Input

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The '192 and 'LS192 circuits are BCD counters and the '193 and 'LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers etc., required for long words.

These counters are designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The '192 and 'LS192 circuits are BCD counters and the '193 and 'LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers etc., required for long words.

These counters are designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 15
類型 標題 日期
* Data sheet Synchronous 4-Bit Up/Down Counters (Dual Clock With Clear) datasheet 1988年 3月 1日
Application brief DLA Approved Optimizations for QML Products (Rev. B) PDF | HTML 2024年 5月 17日
Selection guide TI Space Products (Rev. J) 2024年 2月 12日
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing (Rev. A) 2023年 8月 31日
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations (Rev. A) PDF | HTML 2022年 11月 17日
Application note Single-Event Effects Confidence Interval Calculations (Rev. A) PDF | HTML 2022年 10月 19日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
Application note Designing With Logic (Rev. C) 1997年 6月 1日
Application note Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

封裝 針腳 CAD 符號、佔位空間與 3D 模型
CFP (W) 16 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片