產品詳細資料

Number of channels 8 Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 5000 Features Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Operating temperature range (°C) -55 to 125 Rating Space
Number of channels 8 Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 5000 Features Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Operating temperature range (°C) -55 to 125 Rating Space
CFP (W) 20 90.5828 mm² 13.09 x 6.92
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

These octal flip-flops are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

The eight flip-flops of the ’LVTH574 devices are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (OE\) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE\ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

These octal flip-flops are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

The eight flip-flops of the ’LVTH574 devices are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (OE\) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE\ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 23
類型 標題 日期
* Data sheet SN54LVTH574, SN74LVTH574 datasheet (Rev. G) 2003年 9月 15日
* SMD SN54LVTH574-SP SMD 5962-95832 2016年 7月 8日
Application brief DLA Approved Optimizations for QML Products (Rev. B) PDF | HTML 2024年 5月 17日
Selection guide TI Space Products (Rev. J) 2024年 2月 12日
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing (Rev. A) 2023年 8月 31日
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 2022年 12月 15日
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations (Rev. A) PDF | HTML 2022年 11月 17日
Application note Single-Event Effects Confidence Interval Calculations (Rev. A) PDF | HTML 2022年 10月 19日
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 2021年 7月 26日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002年 5月 22日
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
Selection guide Advanced Bus Interface Logic Selection Guide 2001年 1月 9日
Application note LVT-to-LVTH Conversion 1998年 12月 8日
Application note LVT Family Characteristics (Rev. A) 1998年 3月 1日
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997年 8月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日
Application note Understanding Advanced Bus-Interface Products Design Guide 1996年 5月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

封裝 針腳 CAD 符號、佔位空間與 3D 模型
CFP (W) 20 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片