SLUAAM6 November   2022 BQ24190 , BQ24192 , BQ24192I , BQ24195 , BQ24195L , BQ24196 , BQ24292I , BQ24295 , BQ24296 , BQ24297 , BQ24298 , BQ25600 , BQ25600D , BQ25601 , BQ25601D , BQ25606 , BQ25611D , BQ25616 , BQ25618 , BQ25619 , BQ25620 , BQ25622 , BQ25890 , BQ25890H , BQ25892 , BQ25895 , BQ25896 , BQ25898 , BQ25898D

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Input Current Limit Detection
    2. 1.2 Control Methodology Host Controlled vs Stand-Alone
    3. 1.3 Battery Monitoring and Protection
    4. 1.4 Boost Mode On-The-Go (OTG) Output
  4. 2Stand-Alone Single-Cell Switching Battery Chargers
  5. 3I2C-Controlled 3.9 V – 14 V Single-Cell Switching Battery Chargers With Battery Monitoring (BQ2589x and BQ25898x)
  6. 4I2C-Controlled 3.9 V – 17 V VBUS Single-Cell Switching Battery Chargers (BQ2419x)
  7. 5I2C-Controlled 3.9 V – 6.2 V VBUS Single-Cell Switching Battery Chargers (BQ2429x)
  8. 6I2C-Controlled 3.9 V – 13.5 V VBUS Single-Cell Switching Battery Chargers (BQ2560x and BQ2561x)
  9. 7I2C-Controlled 3.9 V – 18 V VBUS Single-Cell Switching Battery Chargers (BQ2562x)
  10. 8Summary
  11. 9References

Introduction

Besides the common charger parameters such as the input voltage range, the battery charge voltage limit, the maximum charging current, the package size and so on, a single-cell charger designer needs to consider system-level architecture including but not limit to the input current limit detection scheme, the system control methodology, the system monitoring and protection scheme and boost mode operation.