SBAA274A September 2018 – March 2023 ADS1118 , ADS1119 , ADS1120 , ADS112C04 , ADS112U04 , ADS1146 , ADS1147 , ADS1148 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1246 , ADS1247 , ADS1248 , ADS124S06 , ADS124S08 , ADS125H02 , ADS1260 , ADS1261 , ADS1262 , ADS1263
Thermocouples are common temperature sensors used in a wide variety of commercial and industrial applications. While slightly less accurate than resistance temperature detectors (RTDs), thermocouples cover a wide temperature range, are self-powered, and have a fast response time. Their simple construction make them inexpensive and durable. Because of the small sensor voltage and low noise requirements, delta-sigma analog-to-digital converters (ADCs) are ideal data converters for measuring thermocouples. This application report gives an overview of thermocouples, discussing theory of operation, functionality, and methods in temperature measurement. Many circuits are presented showing thermocouple connections to precision ADCs. Different topologies focus on biasing thermocouples for the ADC input and for burn-out measurements.
All trademarks are the property of their respective owners.
Thermocouples are temperature measurement sensors that generate a voltage that changes over temperature. Thermocouples are constructed from two wire leads made from different metals. The wire leads are welded together to create a junction. As the temperature changes from the junction to the ends of the wire leads, a voltage develops across the junction.
Combinations of different metals create a variety of voltage responses. This leads to different types of thermocouples used for different temperature ranges and accuracies. Choosing a thermocouple often is a function of the measurement temperature range required in the application. Other considerations include the temperature accuracy, durability, conditions of use, and the expected service life.