SLAT163 July   2024 AFE43902-Q1 , AFE439A2 , AFE53902-Q1 , AFE539A4 , AFE539F1-Q1 , AFE639D2 , DAC43204 , DAC43401 , DAC43401-Q1 , DAC43701 , DAC43701-Q1 , DAC43901-Q1 , DAC43902-Q1 , DAC53001 , DAC53002 , DAC53004 , DAC53004W , DAC53202 , DAC53204 , DAC53204-Q1 , DAC53204W , DAC53401 , DAC53401-Q1 , DAC53701-Q1 , DAC539E4W , DAC539G2-Q1 , DAC63001 , DAC63002 , DAC63004 , DAC63004W , DAC63202 , DAC63202W , DAC63204 , DAC63204-Q1 , DAC63204W

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1What is a Smart DAC?
  5. 2What is a Smart Analog Front End (AFE)?
  6. 3Smart DAC selection guide
  7. 4Smart AFE Selection Guide
  8. 5Applications
    1. 5.1 Lightning
      1. 5.1.1 Light Emitting Diode (LED) Biasing and Linear Fade-In Fade-Out
      2. 5.1.2 LED Biasing With LED Driver
      3. 5.1.3 Analog Thermal Foldback
        1. 5.1.3.1 Single Slope Thermal Foldback
        2. 5.1.3.2 Multi-Slope Thermal Foldback
      4. 5.1.4 Logarithmic Fade-In/Fade-Out
      5. 5.1.5 LED Sequencing
    2. 5.2 Control
      1. 5.2.1 Voltage Margining and Scaling With Voltage Output Smart DAC
      2. 5.2.2 Thermoelectric Cooling (TEC) Control
        1. 5.2.2.1 TEC Control Using DC/DC Driver
        2. 5.2.2.2 TEC control using h-Bridge driver
      3. 5.2.3 Analog Power Control (APC) of a Laser
      4. 5.2.4 Constant Power Control
    3. 5.3 Microcontroller Independent Fault Management and Communication
      1. 5.3.1 Programmable Comparator Using Smart DAC
      2. 5.3.2 GPI-to-PWM
      3. 5.3.3 If-Then-Else Logic
    4. 5.4 Driver
      1. 5.4.1 Lens Positioning Control for Camera Module Auto-Focus and Image Stabilization
      2. 5.4.2 Laser Drive
    5. 5.5 Miscellaneous Smart DAC Applications
      1. 5.5.1 Software-less Medical Alarm Generation
      2. 5.5.2 555 Timer

If-Then-Else Logic

In systems where safety is important such as medical patient monitoring equipment, there is often a requirement for redundant safety and or software-free fault monitoring. For such systems, smart DAC is a great design.

DAC539E4W integrates 4 independently programmable comparators that can monitor up to 4 different lines. The output of the comparator is internally routed to the user configurable look-up table. Such look-up table outputs GPOs with programmable delay based on the comparator input. For example: if comparator outputs are 0 0 0 0, the GPO is 1 1 1 1, if comparators output 0 0 0 1, the GPI is 1 1 1 0, so on. The comparator-to-GPO relationship can be set-up within the LUT and stored in the non-volatile memory for software-free operation.

Table 5-14 Design Implementation
 Hardware Block DiagramFigure 5-14 Hardware Block Diagram
Design BenefitsSuggested device
  • 4 independent comparators mapped to 4 GPOs
  • Monitoring and detection of up to 16 different monitoring conditions
  • Mode pin to switch between digital communication (SPI/I2C) or GPIO mode
  • Small size and low power for small, battery-powered applications
End EquipmentDesign help