SLAT163 July   2024 AFE43902-Q1 , AFE439A2 , AFE53902-Q1 , AFE539A4 , AFE539F1-Q1 , AFE639D2 , DAC43204 , DAC43401 , DAC43401-Q1 , DAC43701 , DAC43701-Q1 , DAC43901-Q1 , DAC43902-Q1 , DAC53001 , DAC53002 , DAC53004 , DAC53004W , DAC53202 , DAC53204 , DAC53204-Q1 , DAC53204W , DAC53401 , DAC53401-Q1 , DAC53701-Q1 , DAC539E4W , DAC539G2-Q1 , DAC63001 , DAC63002 , DAC63004 , DAC63004W , DAC63202 , DAC63202W , DAC63204 , DAC63204-Q1 , DAC63204W

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1What is a Smart DAC?
  5. 2What is a Smart Analog Front End (AFE)?
  6. 3Smart DAC selection guide
  7. 4Smart AFE Selection Guide
  8. 5Applications
    1. 5.1 Lightning
      1. 5.1.1 Light Emitting Diode (LED) Biasing and Linear Fade-In Fade-Out
      2. 5.1.2 LED Biasing With LED Driver
      3. 5.1.3 Analog Thermal Foldback
        1. 5.1.3.1 Single Slope Thermal Foldback
        2. 5.1.3.2 Multi-Slope Thermal Foldback
      4. 5.1.4 Logarithmic Fade-In/Fade-Out
      5. 5.1.5 LED Sequencing
    2. 5.2 Control
      1. 5.2.1 Voltage Margining and Scaling With Voltage Output Smart DAC
      2. 5.2.2 Thermoelectric Cooling (TEC) Control
        1. 5.2.2.1 TEC Control Using DC/DC Driver
        2. 5.2.2.2 TEC control using h-Bridge driver
      3. 5.2.3 Analog Power Control (APC) of a Laser
      4. 5.2.4 Constant Power Control
    3. 5.3 Microcontroller Independent Fault Management and Communication
      1. 5.3.1 Programmable Comparator Using Smart DAC
      2. 5.3.2 GPI-to-PWM
      3. 5.3.3 If-Then-Else Logic
    4. 5.4 Driver
      1. 5.4.1 Lens Positioning Control for Camera Module Auto-Focus and Image Stabilization
      2. 5.4.2 Laser Drive
    5. 5.5 Miscellaneous Smart DAC Applications
      1. 5.5.1 Software-less Medical Alarm Generation
      2. 5.5.2 555 Timer

Light Emitting Diode (LED) Biasing and Linear Fade-In Fade-Out

In the applications where there is a need for a simple LED biasing, smart DAC is a solid choice. In this application the DAC controls the collector current by varying the voltage at the gate of the MOSFET. Force-sense configuration enables this process to be completely autonomous. In addition, the forse-sense configuration maintains the consistency of the LED light output across multiple platforms by adjusting to component mismatch and errors. Smart DAC also contains a GPIO trigger for on and off control capability, and slew rate control for fade-in and fade-out functionality. All of these parameters are configured via internal register values and can be stored in the integrated non-volatile memory, which loads the registers upon power cycle.

Table 5-1 Design Implementation
 Hardware
                                        Block Diagram Figure 5-1 Hardware Block Diagram
Design Benefits Suggested device
  • Stability against temperature changes and component variations
  • Software independent
  • Fade-in/fade-out animation
End Equipment Design help