제품 상세 정보

Number of series cells 1 Charge current (max) (A) 3 Vin (max) (V) 14 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (min) (V) 3.84 Battery charge voltage (max) (V) 4.6 Absolute max Vin (max) (V) 22 Control topology Switch-Mode Buck Control interface I2C Features BAT temp thermistor monitoring (JEITA profile), BAT temp thermistor monitoring (hot/cold profile), IC thermal regulation, ICO (Input Current Optimization), IINDPM (Input current limit), Input OVP, Integrated ADC, Power Path, USB OTG integrated Vin (min) (V) 3.9 Rating Catalog Operating temperature range (°C) -40 to 85
Number of series cells 1 Charge current (max) (A) 3 Vin (max) (V) 14 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (min) (V) 3.84 Battery charge voltage (max) (V) 4.6 Absolute max Vin (max) (V) 22 Control topology Switch-Mode Buck Control interface I2C Features BAT temp thermistor monitoring (JEITA profile), BAT temp thermistor monitoring (hot/cold profile), IC thermal regulation, ICO (Input Current Optimization), IINDPM (Input current limit), Input OVP, Integrated ADC, Power Path, USB OTG integrated Vin (min) (V) 3.9 Rating Catalog Operating temperature range (°C) -40 to 85
WQFN (RTW) 24 16 mm² 4 x 4
  • High Efficiency 3-A, 1.5-MHz Switch Mode Buck Charge
    • 92.5% Charge Efficiency at 2 A and 90.5% Charge Efficiency at 3 A Charge Current
    • Optimize for High Voltage Input (9 V / 12 V)
    • Low Power PFM mode for Light Load Operations
  • USB On-the-Go (OTG) with Adjustable Output from 4.5 V to 5.5 V
    • Selectable 500-KHz / 1.5-MHz Boost Converter with up-to 2 A Output
    • 93% Boost Efficiency at 5 V at 1 A Output
    • Accurate Hiccup Mode Overcurent Protection
    • Support down-to 2.5V Battery
    • Support PWM only or PFM/PWM control for Light Load Efficiency
  • Single Input to Support USB Input and Adjustable High Voltage Adapters
    • Support 3.9-V to 14-V Input Voltage Range
    • Input Current Limit (100 mA to 3.25 A with 50-mA resolution) to Support USB2.0, USB3.0 standard and High Voltage Adapters
    • Maximum Power Tracking by Input Voltage Limit up-to 14V for Wide Range of Adapters
  • Input Current Optimizer (ICO) to Maximize Input Power without Overloading Adapters
  • Resistance Compensation (IRCOMP) from Charger Output to Cell Terminal
  • Highest Battery Discharge Efficiency with 11-mΩ Battery Discharge MOSFET up to 9 A
  • Integrated ADC for System Monitor
    (Voltage, Temperature, Charge Current)
  • Narrow VDC (NVDC) Power Path Management
    • Instant-on Works with No Battery or Deeply Discharged Battery
    • Ideal Diode Operation in Battery Supplement Mode
  • BATFET Control to Support Ship Mode, Wake Up, and Full System Reset
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration includes all MOSFETs, Current Sensing and Loop Compensation
  • 12-µA Low Battery Leakage Current to Support Ship Mode
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% Charge Current Regulation
    • ±7.5% Input Current Regulation
  • Safety
    • Battery Temperature Sensing for Charge and Boost Mode
    • Thermal Regulation and Thermal Shutdown
  • High Efficiency 3-A, 1.5-MHz Switch Mode Buck Charge
    • 92.5% Charge Efficiency at 2 A and 90.5% Charge Efficiency at 3 A Charge Current
    • Optimize for High Voltage Input (9 V / 12 V)
    • Low Power PFM mode for Light Load Operations
  • USB On-the-Go (OTG) with Adjustable Output from 4.5 V to 5.5 V
    • Selectable 500-KHz / 1.5-MHz Boost Converter with up-to 2 A Output
    • 93% Boost Efficiency at 5 V at 1 A Output
    • Accurate Hiccup Mode Overcurent Protection
    • Support down-to 2.5V Battery
    • Support PWM only or PFM/PWM control for Light Load Efficiency
  • Single Input to Support USB Input and Adjustable High Voltage Adapters
    • Support 3.9-V to 14-V Input Voltage Range
    • Input Current Limit (100 mA to 3.25 A with 50-mA resolution) to Support USB2.0, USB3.0 standard and High Voltage Adapters
    • Maximum Power Tracking by Input Voltage Limit up-to 14V for Wide Range of Adapters
  • Input Current Optimizer (ICO) to Maximize Input Power without Overloading Adapters
  • Resistance Compensation (IRCOMP) from Charger Output to Cell Terminal
  • Highest Battery Discharge Efficiency with 11-mΩ Battery Discharge MOSFET up to 9 A
  • Integrated ADC for System Monitor
    (Voltage, Temperature, Charge Current)
  • Narrow VDC (NVDC) Power Path Management
    • Instant-on Works with No Battery or Deeply Discharged Battery
    • Ideal Diode Operation in Battery Supplement Mode
  • BATFET Control to Support Ship Mode, Wake Up, and Full System Reset
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration includes all MOSFETs, Current Sensing and Loop Compensation
  • 12-µA Low Battery Leakage Current to Support Ship Mode
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% Charge Current Regulation
    • ±7.5% Input Current Regulation
  • Safety
    • Battery Temperature Sensing for Charge and Boost Mode
    • Thermal Regulation and Thermal Shutdown

The bq25896 is a highly-integrated 3-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The devices support high input voltage fast charging. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. The I2C Serial interface with charging and system settings makes the device a truly flexible solution.

The bq25896 is a highly-integrated 3-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of smartphone, tablet and portable devices. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. It also integrates Input Current Optimizer (ICO) and Resistance Compensation (IRCOMP) to deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive and battery monitor for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources and takes the result from detection circuit in the system, such as USB PHY device. The input current and voltage regulation selection is compactible with USB 2.0 and USB 3.0 power spec. In addition, the Input Current Optimizer (ICO) supports the detection of maximum power point detection of the input source without overload. The device also meets USB On-the-Go (OTG) operation power rating specification by supplying 5 V (Adjustable 4.5V-5.5V) on VBUS with current limit up to 2 A.

The power path management regulates the system slightly above battery voltage but does not drop below 3.5V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the power path management automatically reduces the charge current to zero. As the system load continues to increase, the power path discharges the battery until the system power requirement is met. This Supplemental Mode operation prevents overloading the input source.

The device initiates and completes a charging cycle without software control. It automatically detects the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will automatically start another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery temperature negative thermistor monitoring, charging safety timer and overvoltage/overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 120°C (programmable). The STAT output reports the charging status and any fault conditions. The PG output indicates if a good power source is present. The INT immediately notifies host when fault occurs.

The device also provides a 7-bit analog-to-digital converter (ADC) for monitoring charge current and input/battery/system (VBUS, BAT, SYS, TS) voltages. The QON pin provides BATFET enable/reset control to exit low power ship mode or full system reset function.

The device family is available in 24-pin, 4 x 4 mm2 x 0.75 mm thin WQFN package.

The bq25896 is a highly-integrated 3-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The devices support high input voltage fast charging. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. The I2C Serial interface with charging and system settings makes the device a truly flexible solution.

The bq25896 is a highly-integrated 3-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of smartphone, tablet and portable devices. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. It also integrates Input Current Optimizer (ICO) and Resistance Compensation (IRCOMP) to deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive and battery monitor for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources and takes the result from detection circuit in the system, such as USB PHY device. The input current and voltage regulation selection is compactible with USB 2.0 and USB 3.0 power spec. In addition, the Input Current Optimizer (ICO) supports the detection of maximum power point detection of the input source without overload. The device also meets USB On-the-Go (OTG) operation power rating specification by supplying 5 V (Adjustable 4.5V-5.5V) on VBUS with current limit up to 2 A.

The power path management regulates the system slightly above battery voltage but does not drop below 3.5V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the power path management automatically reduces the charge current to zero. As the system load continues to increase, the power path discharges the battery until the system power requirement is met. This Supplemental Mode operation prevents overloading the input source.

The device initiates and completes a charging cycle without software control. It automatically detects the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will automatically start another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery temperature negative thermistor monitoring, charging safety timer and overvoltage/overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 120°C (programmable). The STAT output reports the charging status and any fault conditions. The PG output indicates if a good power source is present. The INT immediately notifies host when fault occurs.

The device also provides a 7-bit analog-to-digital converter (ADC) for monitoring charge current and input/battery/system (VBUS, BAT, SYS, TS) voltages. The QON pin provides BATFET enable/reset control to exit low power ship mode or full system reset function.

The device family is available in 24-pin, 4 x 4 mm2 x 0.75 mm thin WQFN package.

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
BQ25622 활성 최대 입력 18V, 전류 제한, ADC 및 OTG를 지원하는 I²C 제어, 1셀 3.5A 벅 배터리 충전기 Similar buck charger with wide input range, lower quiencent and leakage current

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
11개 모두 보기
유형 직함 날짜
* Data sheet bq25896 I2C Controlled Single Cell 3-A Fast Charger with MaxChargeTM Technology for High Input Voltage and Adjustable Voltage USB On-the-Go Boost Mode datasheet (Rev. C) PDF | HTML 2018/05/04
Application note Selection of Single-Cell Buck Narrow VDC Switching Battery Chargers PDF | HTML 2022/11/10
Application note State of Charge Estimation Using Smart Battery Charger PDF | HTML 2021/10/11
Application note Extracting Maximum Power from an Adapter with Input Current Optimization Feature (Rev. C) 2019/08/02
Application note Battery Charger Overload Protection in Boost Mode Operation 2017/07/12
Application note Handshaking Between Adjustable HVDCP Adapters and Battery Chargers 2016/11/15
EVM User's guide bq25890/892/895/895M EVM (PWR664) User's Guide (Rev. B) PDF | HTML 2015/11/24
Analog Design Journal 4Q 2015 Analog Applications Journal 2015/10/30
Analog Design Journal Faster, cooler charging with dual chargers 2015/10/30
Application note Using the bq2589x ADC to Estimate Battery Temperature 2015/05/04
Analog Design Journal Dynamic power management for faster, more efficient battery charging 2013/10/28

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

BQ25896EVM-664 — bq25896 완전한 충전기 평가 모듈

The bq25896 evaluation module (EVM) is a complete charger module for evaluating the highly-integrated switch-mode battery charge management and system power path management device for 1 cell Li-Ion and Li-polymer battery in a wide range of smartphone and tablet applications.

The BQ25896EVM-664 (...)

사용 설명서: PDF | HTML
TI.com에서 구매 불가
드라이버 또는 라이브러리

BQ25890SW-LINUX — BQ25890용 Linux 드라이버

The Linux driver supports the BQ25890 5-A fast charger. The Linux driver supports communication through the I2C bus and interfaces with the power supply sub-system.

 

Linux mainline status

Available in Linux mainline: Yes
Available through git.ti.com: N/A

Linux source Files

The files associated with this (...)

시뮬레이션 모델

bq2589x Calculation Tools (Rev. A)

SLURAX7A.ZIP (305 KB) - Power Model
패키지 CAD 기호, 풋프린트 및 3D 모델
WQFN (RTW) 24 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상