제품 상세 정보

DSP type 1 C67x DSP (max) (MHz) 167, 200, 225, 300 CPU 32-/64-bit Operating system DSP/BIOS Rating Catalog Operating temperature range (°C) -40 to 105
DSP type 1 C67x DSP (max) (MHz) 167, 200, 225, 300 CPU 32-/64-bit Operating system DSP/BIOS Rating Catalog Operating temperature range (°C) -40 to 105
BGA (ZDP) 272 729 mm² 27 x 27 HLQFP (PYP) 208 784 mm² 28 x 28 PBGA (GDP) 272 729 mm² 27 x 27 PBGA (ZDP) 272 See data sheet
  • Highest-Performance Floating-Point Digital Signal Processor (DSP): TMS320C6713B
    • Eight 32-Bit Instructions/Cycle
    • 32/64-Bit Data Word
    • 300-, 225-, 200-MHz (GDP and ZDP), and 225-, 200-, 167-MHz (PYP) Clock Rates
    • 3.3-, 4.4-, 5-, 6-Instruction Cycle Times
    • 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS/MFLOPS
    • Rich Peripheral Set, Optimized for Audio
    • Highly Optimized C/C++ Compiler
    • Extended Temperature Devices Available
  • Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core
    • Eight Independent Functional Units:
      • 2 ALUs (Fixed-Point)
      • 4 ALUs (Floating-/Fixed-Point)
      • 2 Multipliers (Floating-/Fixed-Point)
    • Load-Store Architecture With 32 32-Bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
  • Instruction Set Features
    • Native Instructions for IEEE 754
      • Single- and Double-Precision
    • Byte-Addressable (8-, 16-, 32-Bit Data)
    • 8-Bit Overflow Protection
    • Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization
  • L1/L2 Memory Architecture
    • 4K-Byte L1P Program Cache (Direct-Mapped)
    • 4K-Byte L1D Data Cache (2-Way)
    • 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-Byte Additional L2 Mapped RAM
  • Device Configuration
    • Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot
    • Endianness: Little Endian, Big Endian
  • 32-Bit External Memory Interface (EMIF)
    • Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM
    • 512M-Byte Total Addressable External Memory Space
  • Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)
  • 16-Bit Host-Port Interface (HPI)
  • Two McASPs
    • Two Independent Clock Zones Each (1 TX and 1 RX)
    • Eight Serial Data Pins Per Port: Individually Assignable to any of the Clock Zones
    • Each Clock Zone Includes:
      • Programmable Clock Generator
      • Programmable Frame Sync Generator
      • TDM Streams From 2-32 Time Slots
      • Support for Slot Size:
          8, 12, 16, 20, 24, 28, 32 Bits
      • Data Formatter for Bit Manipulation
    • Wide Variety of I2S and Similar Bit Stream Formats
    • Integrated Digital Audio Interface Transmitter (DIT) Supports:
      • S/PDIF, IEC60958-1, AES-3, CP-430 Formats
      • Up to 16 transmit pins
      • Enhanced Channel Status/User Data
    • Extensive Error Checking and Recovery
  • Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces
  • Two Multichannel Buffered Serial Ports:
    • Serial-Peripheral-Interface (SPI)
    • High-Speed TDM Interface
    • AC97 Interface
  • Two 32-Bit General-Purpose Timers
  • Dedicated GPIO Module With 16 pins (External Interrupt Capable)
  • Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • 208-Pin PowerPAD™ PQFP (PYP)
  • 272-BGA Packages (GDP and ZDP)
  • 0.13-µm/6-Level Copper Metal Process
    • CMOS Technology
  • 3.3-V I/Os, 1.2-V Internal (GDP/ZDP/ PYP)
  • 3.3-V I/Os, 1.4-V Internal (GDP/ZDP) [300 MHz]

TMS320C67x and PowerPAD are trademarks of Texas Instruments.
I2C Bus is a trademark of Philips Electronics N.V. Corporation
All trademarks are the property of their respective owners.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
These values are compatible with existing 1.26-V designs.
TMS320C6000, eXpressDSP, Code Composer Studio, and DSP/BIOS are trademarks of Texas Instruments.
Throughout the remainder of this document, TMS320C6713B shall be referred to as C6713B or 13B.

  • Highest-Performance Floating-Point Digital Signal Processor (DSP): TMS320C6713B
    • Eight 32-Bit Instructions/Cycle
    • 32/64-Bit Data Word
    • 300-, 225-, 200-MHz (GDP and ZDP), and 225-, 200-, 167-MHz (PYP) Clock Rates
    • 3.3-, 4.4-, 5-, 6-Instruction Cycle Times
    • 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS/MFLOPS
    • Rich Peripheral Set, Optimized for Audio
    • Highly Optimized C/C++ Compiler
    • Extended Temperature Devices Available
  • Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core
    • Eight Independent Functional Units:
      • 2 ALUs (Fixed-Point)
      • 4 ALUs (Floating-/Fixed-Point)
      • 2 Multipliers (Floating-/Fixed-Point)
    • Load-Store Architecture With 32 32-Bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
  • Instruction Set Features
    • Native Instructions for IEEE 754
      • Single- and Double-Precision
    • Byte-Addressable (8-, 16-, 32-Bit Data)
    • 8-Bit Overflow Protection
    • Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization
  • L1/L2 Memory Architecture
    • 4K-Byte L1P Program Cache (Direct-Mapped)
    • 4K-Byte L1D Data Cache (2-Way)
    • 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-Byte Additional L2 Mapped RAM
  • Device Configuration
    • Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot
    • Endianness: Little Endian, Big Endian
  • 32-Bit External Memory Interface (EMIF)
    • Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM
    • 512M-Byte Total Addressable External Memory Space
  • Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)
  • 16-Bit Host-Port Interface (HPI)
  • Two McASPs
    • Two Independent Clock Zones Each (1 TX and 1 RX)
    • Eight Serial Data Pins Per Port: Individually Assignable to any of the Clock Zones
    • Each Clock Zone Includes:
      • Programmable Clock Generator
      • Programmable Frame Sync Generator
      • TDM Streams From 2-32 Time Slots
      • Support for Slot Size:
          8, 12, 16, 20, 24, 28, 32 Bits
      • Data Formatter for Bit Manipulation
    • Wide Variety of I2S and Similar Bit Stream Formats
    • Integrated Digital Audio Interface Transmitter (DIT) Supports:
      • S/PDIF, IEC60958-1, AES-3, CP-430 Formats
      • Up to 16 transmit pins
      • Enhanced Channel Status/User Data
    • Extensive Error Checking and Recovery
  • Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces
  • Two Multichannel Buffered Serial Ports:
    • Serial-Peripheral-Interface (SPI)
    • High-Speed TDM Interface
    • AC97 Interface
  • Two 32-Bit General-Purpose Timers
  • Dedicated GPIO Module With 16 pins (External Interrupt Capable)
  • Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • 208-Pin PowerPAD™ PQFP (PYP)
  • 272-BGA Packages (GDP and ZDP)
  • 0.13-µm/6-Level Copper Metal Process
    • CMOS Technology
  • 3.3-V I/Os, 1.2-V Internal (GDP/ZDP/ PYP)
  • 3.3-V I/Os, 1.4-V Internal (GDP/ZDP) [300 MHz]

TMS320C67x and PowerPAD are trademarks of Texas Instruments.
I2C Bus is a trademark of Philips Electronics N.V. Corporation
All trademarks are the property of their respective owners.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
These values are compatible with existing 1.26-V designs.
TMS320C6000, eXpressDSP, Code Composer Studio, and DSP/BIOS are trademarks of Texas Instruments.
Throughout the remainder of this document, TMS320C6713B shall be referred to as C6713B or 13B.

The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications.

Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS).

Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS).

The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM.

The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals.

The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format.

In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields.

The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range.

The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.

The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see the bootmode section of this data sheet.

The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.

The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications.

Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS).

Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS).

The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM.

The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals.

The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format.

In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields.

The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range.

The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.

The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see the bootmode section of this data sheet.

The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.

다운로드 스크립트와 함께 비디오 보기 동영상
TI에서 제공하는 제한된 설계 지원

이 제품은 기존 프로젝트에 대해 TI에서 제한된 설계 지원을 제공합니다. 가능한 경우 제품 폴더에서 관련 자료, 소프트웨어 및 툴을 확인할 수 있습니다. 이 제품을 사용하는 기존 설계의 경우 TI E2ETM 지원 포럼에서 지원을 요청할 수 있지만, 이 제품에 대한 제한된 지원을 사용할 수 있습니다.

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
23개 모두 보기
유형 직함 날짜
* Data sheet TMS320C6713B Floating-Point Digital Signal Processor datasheet (Rev. B) 2006/06/30
* Errata TMS320C6713, TMS320C6713B DSPs Silicon Errata (Silicon Revisions 2.0, 1.1) (Rev. J) 2005/08/12
Application note How to Migrate CCS 3.x Projects to the Latest CCS (Rev. A) PDF | HTML 2021/05/19
Application note Introduction to TMS320C6000 DSP Optimization 2011/10/06
User guide TMS320C6000 DSP Peripherals Overview Reference Guide (Rev. Q) 2009/07/02
User guide TMS320C6000 DSP Multi-channel Audio Serial Port (McASP) Reference Guide (Rev. J) 2008/11/20
Application note Thermal Considerations for the DM64xx, DM64x, and C6000 Devices 2007/05/20
User guide TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide (Rev. E) 2007/04/11
User guide TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (Rev. D) 2007/03/26
User guide TMS320C6000 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (Rev. G) 2006/12/14
User guide TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (Rev. C) 2006/11/15
User guide TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide (Rev. A) 2006/11/07
User guide TMS320C6000 DSP Host-Post Interface (HPI) Reference Guide (Rev. C) 2006/01/01
Application note Migrating from TMS320C6211B/C6711/C6711B and C6713 to TMS320C6713B (Rev. H) 2005/11/11
User guide TMS320C6000 DSP Power-Down Logic and Modes Reference Guide (Rev. C) 2005/03/01
User guide TMS320C6000 DSP 32-bit Timer Reference Guide (Rev. B) 2005/01/25
User guide TMS320C6000 DSP Software-Programmable Phase-Locked Loop (PLL) Controller RG (Rev. C) 2004/08/02
User guide TMS320C621x/C671x DSP Two Level Internal Memory Reference Guide (Rev. B) 2004/06/08
Application note TMS320C6711D, C6712D, C6713B Power Consumption Summary (Rev. A) 2004/05/31
User guide TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide (Rev. A) 2004/03/25
Application note TMS320C6000 EDMA IO Scheduling and Performance 2004/03/05
Application note TMS320C621x/671x EDMA Performance Data 2004/03/05
Application note TMS320C621x/TMS320C671x EDMA Architecture 2004/03/05

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

디버그 프로브

TMDSEMU560V2STM-U — XDS560v2 시스템 추적 USB 디버그 프로브

XDS560v2는 디버그 프로브의 XDS560™ 제품군 중 최고의 성능을 가진 제품으로, 기존의 JTAG 표준(IEEE1149.1)과 cJTAG(IEEE1149.7)를 모두 지원합니다. SWD(직렬 와이어 디버그)는 지원하지 않습니다.

모든 XDS 디버그 프로브는 ETB(Embedded Trace Buffer)를 특징으로 하는 모든 ARM 및 DSP 프로세서에서 코어 및 시스템 추적을 지원합니다. 핀을 통한 추적의 경우 XDS560v2 PRO TRACE가 필요합니다.

XDS560v2는 MIPI HSPT 60핀 커넥터(TI 14핀, (...)

TI.com에서 구매 불가
디버그 프로브

TMDSEMU560V2STM-UE — XDS560v2 시스템 추적 USB 및 이더넷 디버그 프로브

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

TI.com에서 구매 불가
드라이버 또는 라이브러리

MATHLIB — 부동 소수점 디바이스용 DSP 수학 라이브러리

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
드라이버 또는 라이브러리

SPRC265 — TMS320C6000 DSP 라이브러리(DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
사용 설명서: PDF
IDE, 구성, 컴파일러 또는 디버거

CCSTUDIO Code Composer Studio integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It is comprised of a rich suite of tools used to build, debug, analyze and optimize embedded applications. Code Composer Studio is available across Windows®, Linux® and macOS® platforms.

(...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

이 설계 리소스는 이러한 범주의 제품 대부분을 지원합니다.

제품 세부 정보 페이지에서 지원을 확인하십시오.

시작 다운로드 옵션
시뮬레이션 모델

C6713B GDP BSDL Model

SPRM214.ZIP (6 KB) - BSDL Model
시뮬레이션 모델

C6713B GDP IBIS Model (Rev. B)

SPRM142B.ZIP (81 KB) - IBIS Model
시뮬레이션 모델

C6713B PYP IBIS Model (Rev. B)

SPRM143B.ZIP (80 KB) - IBIS Model
패키지 CAD 기호, 풋프린트 및 3D 모델
BGA (ZDP) 272 Ultra Librarian
HLQFP (PYP) 208 Ultra Librarian
PBGA (GDP) 272 Ultra Librarian
PBGA (ZDP) 272 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상