XF28P650DK9PTP C2000 ™ 32비트 MCU, C28x+CLA CPU 2개, 락스텝, 1.28MB 플래시, 16b ADC, HRPWM, EtherCAT, CAN-FD, AES | PTP | 176 | -40 to 125 package image

XF28P650DK9PTP 활성

C2000 ™ 32비트 MCU, C28x+CLA CPU 2개, 락스텝, 1.28MB 플래시, 16b ADC, HRPWM, EtherCAT, CAN-FD, AES

가격

수량 가격
+

수출 분류

*참조 목적

  • US ECCN: 5A992C

패키징 정보

패키지 | 핀 HLQFP (PTP) | 176
작동 온도 범위(°C) -40 to 125
패키지 수량 | 캐리어 40 | JEDEC TRAY (10+1)

TMS320F28P650DK의 주요 특징

Real-time Processing

  • Contains up to three CPUs: two 32-bit C28x DSP CPUs and one CLA CPU, all running at 200 MHz
  • Delivers a total processing power equivalent to 1000-MHz Arm Cortex-M7 based device on real-time signal chain performance (see the Real-time Benchmarks Showcasing C2000™ Control MCU’s Optimized Signal Chain Application Note)
  • C28x DSP architecture
    • IEEE 754 double-precision (64-bit) Floating-Point Unit (FPU)
    • Trigonometric Math Unit (TMU)
    • Fast Integer Division (FINTDIV)
    • CRC engine and instructions (VCRC)
  • Control Law Accelerator (CLA) CPU
    • IEEE 754 single-precision floating-point
    • Executes code independently of C28x CPUs

Memory

  • 1.28MB of CPU-mappable flash (ECC-protected) with 5 flash banks
  • 248KB of RAM (Enhanced Parity-protected)
  • External Memory Interface (EMIF) with ASRAM, SDRAM support or ASIC/FPGA

Analog Subsystem

  • Three Analog-to-Digital Converters (ADCs)
    • 16-bit mode, 1.19 MSPS each
    • 12-bit mode, 3.92 MSPS each
    • Up to 40 single-ended or 19 differential inputs
    • Separate sample-and-hold (S/H) on each ADC to enable simultaneous measurements
    • Hardware post-processing of conversions
    • Hardware oversampling (up to 128x) and undersampling modes, with accumulation, averaging and outlier rejection
    • 24 redundant input channels for flexibility
    • Automatic comparison of conversion results for functional safety applications
  • 11 windowed comparators with 12-bit Digital-to-Analog Converter (DAC) references
    • DAC with slope compensation – enabling peak current and valley current mode control
    • Connection options for internal temperature sensor and ADC reference
  • Two 12-bit buffered DAC outputs

Control Peripherals

  • 36 Pulse Width Modulator (PWM) channels, all with 150-ps high-resolution capability (HRPWM)
    • Minimum Dead-Band Logic (MINDB), Illegal Combo Logic (ICL), and other special features (that is, Diode Emulation [DE]) support
    • Enable Matrix Converters, Multilevel Converters, and Resonant Converters support without additional external logic
  • Seven Enhanced Capture (eCAP) modules
    • High-resolution Capture (HRCAP) available on two of the seven eCAP modules
    • Two new monitor units for edge, pulse width, and period that can be coupled with ePWM strobes and trip events
    • Increased 256 inputs for more capture options
    • New ADC SOC generation capability
    • eCAP can also be used for additional PWM
    • Six Enhanced Quadrature Encoder Pulse (eQEP) modules
    • 16 Sigma-Delta Filter Module (SDFM) input channels, 2 independent filters per channel
    • Embedded Pattern Generator (EPG)
  • Configurable Logic Block
    • Six logic tiles to augment existing peripheral capability or define customized logic to reduce or remove external CPLD/FPGA
    • Supports Encoder interfaces without the need of FPGA
    • Enables customized PWM generation for power conversion

Communications Peripherals

  • EtherCAT SubordinateDevice (or SubDevice) Controller (ESC)
  • USB 2.0 (MAC + PHY)
  • Fast Serial Interface (FSI) enabling up to 200Mbps data exchange across isolation
  • Four high-speed (up to 50-MHz) SPI ports
  • Four Serial Communications Interfaces (SCI) (support UART)
  • Two high-speed (25Mbps) Universal Asynchronous Receiver/Transmitters (UARTs)
  • Two I2C interfaces (400Kbps)
  • External boot option via SPI/ SCI/I2C
  • Two UART-compatible Local Interconnect Network (LIN) Modules (support SCI)
  • Power-Management Bus (PMBus) interface (supports I2C)
  • One Controller Area Network (CAN/DCAN)
  • Two CAN FD/MCAN Controller Area Networks with Flexible Data Rate

System Peripherals

  • Two 6-channel Direct Memory Access (DMA) controllers
  • 185 individually programmable multiplexed General-Purpose Input/Output (GPIO) pins
  • Expanded Peripheral Interrupt controller (ePIE)
  • Low-power mode (LPM) support
  • Embedded Real-time Analysis and Diagnostic (ERAD)
  • Background CRC (BGCRC)

Security Peripherals

  • Advanced Encryption Standard (AES-128, 192, 256) accelerator
  • Security
    • JTAGLOCK
    • Zero-pin boot
    • Dual-zone security
  • Unique Identification (UID) number

Safety Peripherals

  • Easier implementation with Reciprocal comparison
  • Lockstep on C28x CPU 2
  • Memory Power-On Self-Test (MPOST)
  • Hardware Built-in Self-Test (HWBIST)
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 and IEC 61508 system design
    • Systematic capability up to ASIL D and SIL 3 targeted
    • Hardware capability up to ASIL B and SIL 2 targeted
  • Safety-related certification
    • ISO 26262 and IEC 61508 certification up to ASIL B and SIL 2 by TÜV SÜD planned

Clock and System Control

  • Two internal 10-MHz oscillators
  • On-chip crystal oscillator
  • 2*APLL, BOR, Redundant interrupt vector RAM
  • Windowed watchdog timer module
  • Missing clock detection circuitry
  • Dual-clock Comparator (DCC)
  • Live Firmware Update (LFU)
    • Fast context switching from old to new firmware with or without a power cycle
  • 1.2-V core, 3.3-V I/O design
    • Internal VREG for 1.2-V generation
    • Brownout reset (BOR) circuit

Package options:

  • Lead-free, green packaging
  • 256-ball New Fine Pitch Ball Grid Array (nFBGA) [ZEJ suffix], 13 mm × 13 mm/0.8-mm pitch
  • 176-pin PowerPAD™ Thermally Enhanced Low-profile Quad Flatpack (HLQFP) [PTP suffix], 26 mm × 26 mm/0.5-mm pitch
  • 169-ball New Fine Pitch Ball Grid Array (nFBGA) [NMR suffix], 9 mm × 9 mm/0.65-mm pitch
  • 100-pin PowerPAD™ Thermally Enhanced Thin Quad Flatpack (HTQFP) [PZP suffix], 16 mm × 16 mm/0.5-mm pitch

Temperature

  • Ambient (T A ): –40°C to 125°C (industrial and automotive qualified)

TMS320F28P650DK에 대한 설명

The TMS320F28P65x (F28P65x) is a member of the C2000™ real-time microcontroller family of scalable, ultra-low latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of IGBT, GaN, and SiC technologies.

These include such applications as:

The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 200 MIPS of signal-processing performance in each core for floating- or fixed-point code running from either on-chip flash or SRAM. This is equivalent to the 400-MHz processing power on a Cortex®-M7 based device (C28x DSP core gives two times more performance than the Cortex®-M7 core).The C28x CPU is further boosted by the Trigonometric Math Unit (TMU) and VCRC (Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control systems. Extended instruction sets enable IEEE double-precision 64-bit floating-point math. Finally, the Control Law Accelerator (CLA) enables an additional 200 MIPS per core of independent processing ability. This is equivalent to the 280-MHz processing power on a Cortex®-M7 based device (CLA CPU gives 40% more performance than the Cortex®-M7 core).

The lockstep dual-CPU comparator option has been added in the secondary C28x CPU along with ePIE and DMA for detection of permanent and transient faults. To allow fast context switching from existing to new firmware, hardware enhancements for Live Firmware Update (LFU) have been added to F28P65x.

High-performance analog blocks are tightly integrated with the processing and control units to provide optimal real-time signal chain performance. The Analog-to-Digital Converter (ADC) has been enhanced with up to 40 analog channels, 22 of which have general-purpose input/output (GPIO) capability. Implementation of oversampling is greatly simplified with hardware improvement. For safety-critical ADC conversions, a hardware redundancy checker has been added that provides the ability to compare ADC conversion results from multiple ADC modules for consistency without additional CPU cycles. Thirty-six frequency-independent PWMs, all with high-resolution capability, enable control of multiple power stages, from 3-phase inverters to advanced multilevel power topologies. The PWMs have been enhanced with Minimum Dead-Band Logic (MINDL) and Illegal Combo Logic (ICL) features.

The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate FPGA-like functions into the C2000 real-time MCU.

An EtherCAT SubDevice Controller and other industry-standard protocols like CAN FD and USB 2.0 are available on this device. The Fast Serial Interface (FSI) enables up to 200 Mbps of robust communications across an isolation boundary.

As a highly connected device, the F28P65x also offers various security enablers to help designers implement their cyber security strategy and support features like hardware encryption, secure JTAG and secure Boot.

From a safety standpoint, F28P65x supports numerous safety enablers. For more details, see Industrial Functional Safety for C2000™ Real-Time Microcontrollers and Automotive Functional Safety for C2000™ Real-Time Microcontrollers.

Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™ real-time control MCUs page.

The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered.

Ready to get started? Check out the TMDSCNCD28P65X evaluation board and download C2000Ware.

가격

수량 가격
+

캐리어 옵션

전체 릴, 맞춤형 수량의 릴, 절단 테이프, 튜브, 트레이 등 부품 수량에 따라 다양한 캐리어 옵션을 선택할 수 있습니다.

맞춤형 릴은 한 릴에서 절단 테이프의 연속 길이로, 로트 및 날짜 코드 추적 기능을 유지하여 요청한 정확한 양을 유지합니다. 업계 표준에 따라, 황동 심으로 절단 테이프 양쪽에 18인치 리더와 트레일러를 연결하여 자동화 조립 기계에 직접 공급합니다. TI는 맞춤형 수량의 릴 주문 시 릴 요금을 부과합니다.

절단 테이프란 릴에서 잘라낸 테이프 길이입니다. TI는 요청 수량을 맞추기 위해 여러 가닥의 절단 테이프 또는 박스를 사용하여 주문을 이행할 수 있습니다.

TI는 종종 재고 가용성에 따라 튜브 또는 트레이 디바이스를 박스나 튜브 또는 트레이로 배송합니다. TI는 내부 정전 방전 및 습도 민감성 수준 보호 요구 사항에 따라 모든 테이프, 튜브 또는 샘플 박스를 포장합니다.

자세히 보기

로트 및 날짜 코드를 선택할 수 있습니다.

장바구니에 수량을 추가하고 결제 프로세스를 시작하여 기존 재고에서 로트 또는 날짜 코드를 선택할 수 있는 옵션을 확인합니다.

자세히 보기