LF198JAN-SP

ACTIVE

Monolithic Sample and Hold Circuit

Product details

Rating Space Operating temperature range (°C) -55 to 125
Rating Space Operating temperature range (°C) -55 to 125
TO-CAN (LMC) 8 80.2816 mm² 8.96 x 8.96
  • Operates from ±5V to ±18V Supplies
  • Less Than 10 μs Acquisition Time
  • TTL, PMOS, CMOS Compatible Logic Input
  • 0.5 mV Typical Hold Step at Ch = 0.01 μF
  • Low Input Offset
  • 0.002% Gain Accuracy
  • Low Output Noise in Hold Mode
  • Input Characteristics Do Not Change During Hold Mode
  • High Supply Rejection Ratio in Sample or Hold
  • Wide Bandwidth
  • Space Qualified
    Logic Inputs on the LF198 are Fully Differential with Low Input Current, Allowing Direct Connection to TTL, PMOS, and CMOS. Differential Threshold is 1.4V. The LF198 will Operate from ±5V to ±18V Supplies.

All trademarks are the property of their respective owners.

  • Operates from ±5V to ±18V Supplies
  • Less Than 10 μs Acquisition Time
  • TTL, PMOS, CMOS Compatible Logic Input
  • 0.5 mV Typical Hold Step at Ch = 0.01 μF
  • Low Input Offset
  • 0.002% Gain Accuracy
  • Low Output Noise in Hold Mode
  • Input Characteristics Do Not Change During Hold Mode
  • High Supply Rejection Ratio in Sample or Hold
  • Wide Bandwidth
  • Space Qualified
    Logic Inputs on the LF198 are Fully Differential with Low Input Current, Allowing Direct Connection to TTL, PMOS, and CMOS. Differential Threshold is 1.4V. The LF198 will Operate from ±5V to ±18V Supplies.

All trademarks are the property of their respective owners.

The LF198 is a monolithic sample-and-hold circuit which utilizes BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 μs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of 1010Ω allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 μF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design ensures no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

The LF198 is a monolithic sample-and-hold circuit which utilizes BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 μs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of 1010Ω allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 μF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design ensures no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet LF198JAN Monolithic Sample-and-Hold Circuits datasheet (Rev. A) 20 Mar 2013
Application brief DLA Approved Optimizations for QML Products (Rev. B) PDF | HTML 17 May 2024
Selection guide TI Space Products (Rev. J) 12 Feb 2024
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing (Rev. A) 31 Aug 2023
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations (Rev. A) PDF | HTML 17 Nov 2022
Application note Single-Event Effects Confidence Interval Calculations (Rev. A) PDF | HTML 19 Oct 2022

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
TO-CAN (LMC) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos