Produktdetails

Resolution (bps) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating HiRel Enhanced Product Interpolation 1x Power consumption (typ) (mW) 820 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -55 to 125 Reference type Int
Resolution (bps) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating HiRel Enhanced Product Interpolation 1x Power consumption (typ) (mW) 820 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -55 to 125 Reference type Int
HTQFP (PHP) 48 81 mm² 9 x 9
  • 400-MSPS Update Rate
  • Controlled Baseline
    • One Assembly
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist
    • 69 dBc at 70 MHz IF, 400 MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR)
    • 73 dBc at 30.72-MHz IF, 122.88 MSPS
    • 71 dBc at 61.44-MHz IF, 245.76 MSPS
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • Single 3.3-V Supply Operation
  • Power Dissipation: 660 mW at fCLK = 400 MSPS, fOUT = 20 MHz
  • Package: 48-Pin PowerPAD Thermally-Enhanced Thin Quad Flat Pack (HTQFP) TJA = 29.1°C/W
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel:
      • CDMA: WCDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/GPRS
      • Supports Single-Carrier and Multicarrier Applications
    • Test and Measurement: Arbitrary Waveform Generation
    • Military Communications

PowerPAD is a trademark of Texas Instruments.

  • 400-MSPS Update Rate
  • Controlled Baseline
    • One Assembly
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist
    • 69 dBc at 70 MHz IF, 400 MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR)
    • 73 dBc at 30.72-MHz IF, 122.88 MSPS
    • 71 dBc at 61.44-MHz IF, 245.76 MSPS
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • Single 3.3-V Supply Operation
  • Power Dissipation: 660 mW at fCLK = 400 MSPS, fOUT = 20 MHz
  • Package: 48-Pin PowerPAD Thermally-Enhanced Thin Quad Flat Pack (HTQFP) TJA = 29.1°C/W
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel:
      • CDMA: WCDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/GPRS
      • Supports Single-Carrier and Multicarrier Applications
    • Test and Measurement: Arbitrary Waveform Generation
    • Military Communications

PowerPAD is a trademark of Texas Instruments.

The DAC5675 is a 14-bit resolution high-speed digital-to-analog converter (DAC). The DAC5675 is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675 has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes it well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675 operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675 provides a nominal full-scale differential current output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675 comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675 and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675 current-source-array architecture supports update rates of up to 400 MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675 has been specifically designed for a differential transformer-coupled output with a 50- doubly-terminated load. With the 20-mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (-2 dBm) is supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD - 1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675 features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675 is available in a 48-pin PowerPAD™ thermally-enhanced thin quad flat pack (HTQFP). This package increases thermal efficiency in a standard size IC package. The device is specified for operation over the military temperature range of -55°C to 125°C.

The DAC5675 is a 14-bit resolution high-speed digital-to-analog converter (DAC). The DAC5675 is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675 has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes it well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675 operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675 provides a nominal full-scale differential current output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675 comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675 and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675 current-source-array architecture supports update rates of up to 400 MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675 has been specifically designed for a differential transformer-coupled output with a 50- doubly-terminated load. With the 20-mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (-2 dBm) is supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD - 1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675 features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675 is available in a 48-pin PowerPAD™ thermally-enhanced thin quad flat pack (HTQFP). This package increases thermal efficiency in a standard size IC package. The device is specified for operation over the military temperature range of -55°C to 125°C.

Herunterladen Video mit Transkript ansehen Video

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 5
Typ Titel Datum
* Data sheet DAC5675-EP datasheet (Rev. A) 24 Okt 2006
* Radiation & reliability report DAC5675-EP Reliability Report 11 Jun 2018
* VID DAC5675-EP VID V6205619 21 Jun 2016
Application note CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters 08 Jun 2008
Application note Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 02 Jun 2008

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Simulationstool

PSPICE-FOR-TI — PSpice® für TI Design-und Simulationstool

PSpice® für TI ist eine Design- und Simulationsumgebung, welche Sie dabei unterstützt, die Funktionalität analoger Schaltungen zu evaluieren. Diese voll ausgestattete Design- und Simulationssuite verwendet eine analoge Analyse-Engine von Cadence®. PSpice für TI ist kostenlos erhältlich und (...)
Gehäuse Pins CAD-Symbole, Footprints und 3D-Modelle
HTQFP (PHP) 48 Ultra Librarian

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos