SN74ALVTH16245 wird nicht mehr produziert
Dieses Produkt wird nicht mehr produziert. Neue Designs sollten ein alternatives Produkt erwägen.
Selbe Funktionalität wie der verglichene Baustein bei gleicher Anschlussbelegung
74ACT16245 AKTIV Bustransceiver, 16 Bit, mit Tri-State-Ausgängen Lower average drive strength (24mA)
SN74LVCH16245A AKTIV Bustransceiver, 16 Bit, mit Tri-State-Ausgängen Replacement
Selbe Funktionalität wie der verglichene Baustein bei abweichender Anschlussbelegung
SN74LVTH16245A AKTIV ABT-Bustransceiver, 3,3 V, 16 Bit, mit Tri-State-Ausgängen Longer average propagation delay (4.5ns), higher average drive strength (64mA)

Produktdetails

Supply voltage (min) (V) 2.3 Supply voltage (max) (V) 3.6 Number of channels 16 IOL (max) (mA) 24 IOH (max) (mA) -8 Input type TTL Output type TTL Features Bias Vcc, Bus-hold, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Technology family ALVT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 2.3 Supply voltage (max) (V) 3.6 Number of channels 16 IOL (max) (mA) 24 IOH (max) (mA) -8 Input type TTL Output type TTL Features Bias Vcc, Bus-hold, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Technology family ALVT Rating Catalog Operating temperature range (°C) -40 to 85
TVSOP (DGV) 48 62.08 mm² 9.7 x 6.4
  • State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static-Power Dissipation
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V VCC)
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • High Drive (–32/64 mA at 3.3-V VCC)
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
  • Flow-Through Architecture Facilitates Printed Circuit Board Layout
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

Widebus is a trademark of Texas Instruments.

  • State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static-Power Dissipation
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V VCC)
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • High Drive (–32/64 mA at 3.3-V VCC)
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
  • Flow-Through Architecture Facilitates Printed Circuit Board Layout
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

Widebus is a trademark of Texas Instruments.

The ’ALVTH16245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for 2.5-V or 3.3-V VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE)\ input can be used to disable the device so that the buses are effectively isolated.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.2 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The ’ALVTH16245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for 2.5-V or 3.3-V VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE)\ input can be used to disable the device so that the buses are effectively isolated.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.2 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Herunterladen

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 1
Typ Titel Datum
* Data sheet 2.5-V/3.3-V 16-Bit Bus Transceivers With 3-State Outputs datasheet (Rev. G) 04 Apr 2002

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort