SN74LV244A-EP wird nicht mehr produziert
Dieses Produkt wird nicht mehr produziert. Neue Designs sollten ein alternatives Produkt erwägen.
Drop-In-Ersatz mit gegenüber dem verglichenen Baustein verbesserter Funktionalität
SN74LV244B-EP AKTIV Verbessertes Produkt – Acht-Kanal-Puffer, 2 V bis 5,5 V, mit Tri-State-Ausgängen Replacement

Produktdetails

Technology family LV-A Supply voltage (min) (V) 2 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 50 Supply current (max) (µA) 20 IOH (max) (mA) -50 Input type Standard CMOS Output type 3-State Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
Technology family LV-A Supply voltage (min) (V) 2 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 50 Supply current (max) (µA) 20 IOH (max) (mA) -50 Input type Standard CMOS Output type 3-State Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
SOIC (DW) 20 131.84 mm² 12.8 x 10.3
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree(1)
  • 2-V to 5.5-V VCC Operation
  • Max tpd of 6.5 ns at 5 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2.3 V at VCC = 3.3 V, TA = 25°C
  • Supports Mixed-Mode Voltage Operation on All Ports
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

(1)Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree(1)
  • 2-V to 5.5-V VCC Operation
  • Max tpd of 6.5 ns at 5 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2.3 V at VCC = 3.3 V, TA = 25°C
  • Supports Mixed-Mode Voltage Operation on All Ports
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

(1)Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

This octal buffer/line driver is designed for 2-V to 5.5-V VCC operation.

The SN74LV244A-EP is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device is organized as two 4-bit line drivers with separate output-enable (OE) inputs. When OE is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

This octal buffer/line driver is designed for 2-V to 5.5-V VCC operation.

The SN74LV244A-EP is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device is organized as two 4-bit line drivers with separate output-enable (OE) inputs. When OE is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

Herunterladen

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 1
Typ Titel Datum
* Data sheet SN74LV244A-EP datasheet 03 Jan 2006

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort