CD74HC4059

활성

고속 CMOS 로직 CMOS 프로그래머블 1/n 카운터

제품 상세 정보

Function Counter Bits (#) 1 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
Function Counter Bits (#) 1 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
SOIC (DW) 24 159.65 mm² 15.5 x 10.3
  • Synchronous Programmable N Counter N = 3 to 9999 or 15999
  • Presettable Down-Counter
  • Fully Static Operation
  • Mode-Select Control of Initial Decade Counting Function (10, 8, 5, 4, 2)
  • Master Preset Initialization
  • Latchable N Output
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • Applications
    • Communications Digital Frequency Synthesizers;
      VHF, UHF, FM, AM, etc.
    • Fixed or Programmable Frequency Division
    • "Time Out" Timer for Consumer-Application Industrial Controls
  • Synchronous Programmable N Counter N = 3 to 9999 or 15999
  • Presettable Down-Counter
  • Fully Static Operation
  • Mode-Select Control of Initial Decade Counting Function (10, 8, 5, 4, 2)
  • Master Preset Initialization
  • Latchable N Output
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • Applications
    • Communications Digital Frequency Synthesizers;
      VHF, UHF, FM, AM, etc.
    • Fixed or Programmable Frequency Division
    • "Time Out" Timer for Consumer-Application Industrial Controls

The ’HC4059 are high-speed silicon-gate devices that are pin-compatible with the CD4059A devices of the CD4000B series. These devices are divide-by-N down-counters that can be programmed to divide an input frequency by any number "N" from 3 to 15,999. The output signal is a pulse one clock cycle wide occurring at a rate equal to the input frequency divide by N. The down-counter is preset by means of 16 jam inputs.

The three Mode-Select Inputs Ka,Kb and Kc determine the modulus ("divide-by" number) of the first and last counting sections in accordance with the truth table. Every time the first (fastest) counting section goes through one cycle, it reduces by 1 the number that has been preset (jammed) into the three decades of the intermediate counting section an the last counting section, which consists of flip-flops that are not needed for opening the first counting section. For example, in the 10) counters presettable by means of Jam Inputs J5 through J16.

The Mode-Select Inputs permit frequency-synthesizer channel separations of 10, 12.5, 20, 25 or 50 parts. These inputs set the maximum value of N at 9999 (when the first counting section divides by 5 or 10) or 15,999 (when the first counting section divides by 8, 4, or 2).

The three decades of the intermediate counter can be preset to a binary 15 instead of a binary 9, while their place values are still 1, 10, and 100, multiplied by the number of the 8 mode, the number from which counting down begins can be preset to:
     3rd Decade                     1500
     2nd Decade                     150
     1st Decade                     15
     Last Counting Section    1000

The total of these numbers (2665) times 8 equals 12,320. The first counting section can be preset to 7. Therefore, 21,327 is the maximum possible count in the 8 mode.

The highest count of the various modes is shown in the Extended Counter Range column. Control inputs Kb and Kc can be used to initiate and lock the counter in the "master preset" state. In this condition the flip-flops in the counter are preset in accordance with the jam inputs and the counter remains in that state as long as Kb and Kc both remain low. The counter begins to count down from the preset state when a counting mode other than the master preset mode is selected.

The counter should always be put in the master preset mode before the 5 mode is selected. Whenever the master preset mode is used, control signals Kb = "low" and Kc = "low" must be applied for at least 3 full clock pulses.

After Preset Mode inputs have been changed to one of the 8 mode). If the Master Preset mode is started two clock cycles or less before an output pulse, the output pulse will appear at the time due. If the Master Preset Mode is not used, the counter jumps back to the "Jam" count when the output pulse appears.

A "high" on the Latch Enable input will cause the counter output to remain high once an output pulse occurs, and to remain in the high state until the latch input returns to "low". If the Latch Enable is "low", the output pulse will remain high for only one cycle of the clock-input signal.

The ’HC4059 are high-speed silicon-gate devices that are pin-compatible with the CD4059A devices of the CD4000B series. These devices are divide-by-N down-counters that can be programmed to divide an input frequency by any number "N" from 3 to 15,999. The output signal is a pulse one clock cycle wide occurring at a rate equal to the input frequency divide by N. The down-counter is preset by means of 16 jam inputs.

The three Mode-Select Inputs Ka,Kb and Kc determine the modulus ("divide-by" number) of the first and last counting sections in accordance with the truth table. Every time the first (fastest) counting section goes through one cycle, it reduces by 1 the number that has been preset (jammed) into the three decades of the intermediate counting section an the last counting section, which consists of flip-flops that are not needed for opening the first counting section. For example, in the 10) counters presettable by means of Jam Inputs J5 through J16.

The Mode-Select Inputs permit frequency-synthesizer channel separations of 10, 12.5, 20, 25 or 50 parts. These inputs set the maximum value of N at 9999 (when the first counting section divides by 5 or 10) or 15,999 (when the first counting section divides by 8, 4, or 2).

The three decades of the intermediate counter can be preset to a binary 15 instead of a binary 9, while their place values are still 1, 10, and 100, multiplied by the number of the 8 mode, the number from which counting down begins can be preset to:
     3rd Decade                     1500
     2nd Decade                     150
     1st Decade                     15
     Last Counting Section    1000

The total of these numbers (2665) times 8 equals 12,320. The first counting section can be preset to 7. Therefore, 21,327 is the maximum possible count in the 8 mode.

The highest count of the various modes is shown in the Extended Counter Range column. Control inputs Kb and Kc can be used to initiate and lock the counter in the "master preset" state. In this condition the flip-flops in the counter are preset in accordance with the jam inputs and the counter remains in that state as long as Kb and Kc both remain low. The counter begins to count down from the preset state when a counting mode other than the master preset mode is selected.

The counter should always be put in the master preset mode before the 5 mode is selected. Whenever the master preset mode is used, control signals Kb = "low" and Kc = "low" must be applied for at least 3 full clock pulses.

After Preset Mode inputs have been changed to one of the 8 mode). If the Master Preset mode is started two clock cycles or less before an output pulse, the output pulse will appear at the time due. If the Master Preset Mode is not used, the counter jumps back to the "Jam" count when the output pulse appears.

A "high" on the Latch Enable input will cause the counter output to remain high once an output pulse occurs, and to remain in the high state until the latch input returns to "low". If the Latch Enable is "low", the output pulse will remain high for only one cycle of the clock-input signal.

다운로드

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치와 동일한 기능을 지원하는 핀 대 핀
CD74HC4017 활성 10개의 디코딩 출력을 지원하는 고속 CMOS 로직 십진 카운터/드라이버 Divider with 10 decoded outputs
비교 대상 장치와 유사한 기능
CD4060B 활성 CMOS 14단계 리플-캐리 이진 카운터/디바이더 및 오실레이터 Voltage range (3V to 18V), average propagation delay (130ns)

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet CD54HC4059, CD74HC4059 datasheet (Rev. B) 2003/04/28

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​