SN74F163A

활성

동기식 4비트 이진 카운터

제품 상세 정보

Function Counter Bits (#) 4 Technology family F Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features Very high speed (tpd 5-10ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family F Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features Very high speed (tpd 5-10ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6
  • Internal Look-Ahead Circuitry for Fast Counting
  • Carry Output for N-Bit Cascading
  • Fully Synchronous Operation for Counting

  • Internal Look-Ahead Circuitry for Fast Counting
  • Carry Output for N-Bit Cascading
  • Fully Synchronous Operation for Counting

This synchronous, presettable, 4-bit binary counter has internal carry look-ahead circuitry for use in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that normally are associated with asynchronous (ripple-clock) counters. However, counting spikes can occur on the ripple-carry (RCO) output. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of CLK.

This counter is fully programmable. That is, it can be preset to any number between 0 and 15. Because presetting is synchronous, a low logic level at the load (LOAD\) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of ENP and ENT.

The clear function is synchronous, and a low logic level at the clear (CLR\) input sets all four of the flip-flop outputs to low after the next low-to-high transition of the clock, regardless of the levels of ENP and ENT. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications, without additional gating. This function is implemented by the ENP and ENT inputs and an RCO output. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a high-logic-level pulse while the count is 15 (HHHH). The high-logic-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

The SN74F163A features a fully independent clock circuit. Changes at ENP, ENT, or LOAD\ that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the setup and hold times.

This synchronous, presettable, 4-bit binary counter has internal carry look-ahead circuitry for use in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that normally are associated with asynchronous (ripple-clock) counters. However, counting spikes can occur on the ripple-carry (RCO) output. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of CLK.

This counter is fully programmable. That is, it can be preset to any number between 0 and 15. Because presetting is synchronous, a low logic level at the load (LOAD\) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of ENP and ENT.

The clear function is synchronous, and a low logic level at the clear (CLR\) input sets all four of the flip-flop outputs to low after the next low-to-high transition of the clock, regardless of the levels of ENP and ENT. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications, without additional gating. This function is implemented by the ENP and ENT inputs and an RCO output. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a high-logic-level pulse while the count is 15 (HHHH). The high-logic-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

The SN74F163A features a fully independent clock circuit. Changes at ENP, ENT, or LOAD\ that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the setup and hold times.

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치보다 업그레이드된 기능을 지원하는 드롭인 대체품
CD74ACT163 활성 동기 리셋을 지원하는 동기식 프리셋 가능 이진 카운터 Higher average drive strength (24mA)
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
SN74LV163A 활성 4비트 동기식 이진 카운터 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
9개 모두 보기
유형 직함 날짜
* Data sheet Synchronous 4-Bit Binary Counter datasheet (Rev. A) 2001/09/04
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997/08/01
Application note Designing With Logic (Rev. C) 1997/06/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

14-24-LOGIC-EVM — 14핀~24핀 D, DB, DGV, DW, DYY, NS 및 PW 패키지용 로직 제품 일반 평가 모듈

14-24-LOGIC-EVM 평가 모듈(EVM)은 14핀~24핀 D, DW, DB, NS, PW, DYY 또는 DGV 패키지에 있는 모든 로직 장치를 지원하도록 설계되었습니다.

사용 설명서: PDF | HTML
TI.com에서 구매 불가
패키지 CAD 기호, 풋프린트 및 3D 모델
PDIP (N) 16 Ultra Librarian
SOIC (D) 16 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상