SN65LVDS31-EP

ACTIVE

Enhanced product quad LVDS transmitter

SN65LVDS31-EP

ACTIVE

Product details

Function Driver Protocols LVDS Number of transmitters 4 Number of receivers 0 Supply voltage (V) 3.3 Signaling rate (Mbps) 400 Input signal LVTTL Output signal LVDS Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
Function Driver Protocols LVDS Number of transmitters 4 Number of receivers 0 Supply voltage (V) 3.3 Signaling rate (Mbps) 400 Input signal LVTTL Output signal LVDS Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
SOIC (D) 16 59.4 mm² 9.9 x 6
  • Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
  • Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and 100-Ω Load
  • Typical Output Voltage Rise and Fall Times of 500 ps (400 Mbps)
  • Typical Propagation Delay Times of 1.7 ns
  • Operate From a Single 3.3-V Supply
  • Power Dissipation 25 mW Typical Per Driver at 200 MHz
  • Driver at High Impedance When Disabled or With VCC = 0
  • Bus-Terminal ESD Protection Exceeds 8 kV
  • Low-Voltage TTL (LVTTL) Logic Input Levels
  • Pin Compatible With AM26LS31, MC3487, and µA9638
  • Cold Sparing for Space and High Reliability Applications Requiring Redundancy
  • Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
  • Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and 100-Ω Load
  • Typical Output Voltage Rise and Fall Times of 500 ps (400 Mbps)
  • Typical Propagation Delay Times of 1.7 ns
  • Operate From a Single 3.3-V Supply
  • Power Dissipation 25 mW Typical Per Driver at 200 MHz
  • Driver at High Impedance When Disabled or With VCC = 0
  • Bus-Terminal ESD Protection Exceeds 8 kV
  • Low-Voltage TTL (LVTTL) Logic Input Levels
  • Pin Compatible With AM26LS31, MC3487, and µA9638
  • Cold Sparing for Space and High Reliability Applications Requiring Redundancy

The SN65LVDS31 is a differential line driver that implements the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as TIA/EIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3.3-V supply rail. This driver will deliver a minimum differential output voltage magnitude of 247 mV into a 100-Ω load when enabled.

The intended application of this device and signaling technique is both point-to-point and multidrop (one driver and multiple receivers) data transmission over controlled impedance media of approximately 100 Ω. The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS31 is characterized for operation from –55°C to 125°C.

The SN65LVDS31 is a differential line driver that implements the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as TIA/EIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3.3-V supply rail. This driver will deliver a minimum differential output voltage magnitude of 247 mV into a 100-Ω load when enabled.

The intended application of this device and signaling technique is both point-to-point and multidrop (one driver and multiple receivers) data transmission over controlled impedance media of approximately 100 Ω. The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS31 is characterized for operation from –55°C to 125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet SN65LVDS31-EP High-Speed Differential Line Drivers datasheet 22 Sep 2011
* VID SN65LVDS31-EP VID V6207627 21 Jun 2016
* Radiation & reliability report SN65LVDS31MDREP Reliability Report 07 Jan 2013
Application brief LVDS to Improve EMC in Motor Drives 27 Sep 2018
Application brief How Far, How Fast Can You Operate LVDS Drivers and Receivers? 03 Aug 2018
Application brief How to Terminate LVDS Connections with DC and AC Coupling 16 May 2018

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AWRL1432BOOST-BSD — AWRL1432 single-chip mmWave sensor evaluation board for blind spot detection

AWRL1432BOOST-BSD is an easy-to-use 70GHz mmWave sensor evaluation kit based on AWRL1432 device with onboard ROGERS RO3003 high-performance antenna. This board enables access to point-cloud data and power over USB interface. The AWRL1432BOOST-BSD supports direct connectivity to the DCA1000EVM (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

AWRL6432BOOST — AWRL6432BOOST BoosterPack™ evaluation module for single-chip low-power mmWave radar sensor

AWRL6432BOOST is an easy-to-use low-power 60GHz mmWave sensor evaluation kit for the AWRL6432 with an FR4-based antenna. This board enables access to point-cloud data and power-over-USB interfaces.

AWRL6432BOOST supports direct connectivity to DCA1000EVM. The BoosterPack is supported by mmWave (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

IWRL1432BOOST-BSD — IWRL1432 evaluation module for BSD with low-power 76-GHz to 81-GHz industrial radar sensor

IWRL1432BOOST-BSD is an easy-to-use 77 GHz mmWave sensor evaluation kit based on IWRL1432 device with on board ROGERS RO3003 high-performance antenna. This board enables access to point-cloud data and power over USB interface. The IWRL1432BOOST-BSD also has a 12V operated TCAN4550 for applications (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

IWRL6432BOOST — IWRL6432 BoosterPack™ evaluation module for single-chip 60GHz mmWave low-power sensor

IWRL6432BOOST is an easy-to-use 60GHz mmWave sensor evaluation kit based on IWRL6432 device with on board FR4-based antenna. This board enables access to point-cloud data and power-over-USB interface. The IWRL6432BOOST supports direct connectivity to the DCA1000EVM development kit.

This kit is (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

SN65LVDS31-32BEVM — SN65LVDS31-32B a low voltage differential signaling evaluation module for LVDS31 and LVDS32B

TI offers a series of low-voltage differential signaling (LVDS) evaluation modules (EVMs) designed for analysis of the electrical characteristics of LVDS drivers and receivers. Four unique EVMs are available to evaluate the different classes of LVDS devices offered by TI.

Combination Table

As seen (...)

User guide: PDF
Not available on TI.com
Evaluation board

SN65LVDS31-32EVM — SN65LVDS31-32EVM evaluation module for SNx5LVDS31 & SNx5LVDS32

The SN65LVDS31-32EVM evaluation moduel (EVM) includes the SV65LVDS31 quad driver and the SN65LVDS32 quad receiver. The SN65LVDS31 device is a TIA/EIA-644 standard-compliant LVDS driver. The SN65LVDS32 device is a TIA/EIA-644 standard-compliant receiver that has a passive open-circuit failsafe (...)

User guide: PDF
Not available on TI.com
Evaluation board

SN65LVDS31-33EVM — Evaluation Module for SN65LVDS31 and SN65LVDS33

TI offers a series of low-voltage differential signaling (LVDS) evaluation modules (EVMs) designed for analysis of the electrical characteristics of LVDS drivers and receivers. Four unique EVMs are available to evaluate the different classes of LVDS devices offered by TI.

As seen in the Combination (...)

User guide: PDF
Not available on TI.com
Simulation model

SN65LVDS31 IBIS Model (Rev. B)

SLLC012B.ZIP (6 KB) - IBIS Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 16 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos