TLC27L1A

활성

싱글, 16V, 85kHz, 저전력(10μA/ch), 5mV 오프셋 전압, 입력-V- 연산 증폭기

이 제품의 최신 버전이 있습니다

open-in-new 대안 비교
비교 대상 장치보다 업그레이드된 기능을 지원하는 드롭인 대체품
TLV27L1 활성 단일, 16V, 160kHz 연산 증폭기 Higher GBW (0.16 MHz), faster slew rate (0.06 V/μs), lower power (0.007 mA), wider temp range (-40 to 125 °C)
TLV9101 활성 싱글, 16V, 1.1MHz, 저전력 연산 증폭기 Rail-to-rail I/O, higher GBW (1.1 MHz), faster slew rate (4.5 V/μs), lower offset voltage (1.5 mV), lower noise (30 nV/√Hz), higher output current (80 mA), wider temp range (-40 to 125 °C)

제품 상세 정보

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 CMRR (typ) (dB) 94 Iout (typ) (A) 0.001 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -0.9
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 CMRR (typ) (dB) 94 Iout (typ) (A) 0.001 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -0.9
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6
  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
      0°C to 70°C . . . 3 V to 16 V
      40°C to 85°C . . . 4 V to 16 V
      55°C to 125°C . . . 5 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)
  • Low Noise . . . 68 nV/Hz Typically at f = 1 kHz
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance . . . 1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

LinCMOS is a trademark of Texas Instruments.

  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
      0°C to 70°C . . . 3 V to 16 V
      40°C to 85°C . . . 4 V to 16 V
      55°C to 125°C . . . 5 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)
  • Low Noise . . . 68 nV/Hz Typically at f = 1 kHz
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance . . . 1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

LinCMOS is a trademark of Texas Instruments.

The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage drift and high input impedance. In addition, the TLC27L1 is a low-bias version of the TLC271 programmable amplifier. These devices use the Texas Instruments silicon-gate LinCMOS™ technology, which provides offset-voltage stability far exceeding the stability available with conventional metal-gate processes.

Three offset-voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L1 (10 mV) to the TLC27L1B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC27L1. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input-voltage range includes the negative rail.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L1 incorporates internal electrostatic-discharge (ESD) protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage drift and high input impedance. In addition, the TLC27L1 is a low-bias version of the TLC271 programmable amplifier. These devices use the Texas Instruments silicon-gate LinCMOS™ technology, which provides offset-voltage stability far exceeding the stability available with conventional metal-gate processes.

Three offset-voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L1 (10 mV) to the TLC27L1B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC27L1. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input-voltage range includes the negative rail.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L1 incorporates internal electrostatic-discharge (ESD) protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

다운로드

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet LinCMOS Low-Power Operational Amplifiers datasheet (Rev. B) 2005/06/01

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​