SN54LVTH162374-SP

활성

3상 출력을 지원하는 3.3V ABT 16비트 에지 트리거 D형 플립플롭

제품 상세 정보

Number of channels 16 Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 5000 Features Balanced outputs, Bus-hold, Damping resistors, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Operating temperature range (°C) -55 to 125 Rating Space
Number of channels 16 Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 5000 Features Balanced outputs, Bus-hold, Damping resistors, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Operating temperature range (°C) -55 to 125 Rating Space
CFP (WD) 48 153.4008 mm² 15.88 x 9.66
  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 22- Series Resistors, So No External Resistors Are Required
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus is a trademark of Texas Instruments.

  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 22- Series Resistors, So No External Resistors Are Required
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus is a trademark of Texas Instruments.

The 'LVTH162374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The 'LVTH162374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
24개 모두 보기
유형 직함 날짜
* Data sheet SN54LVTH162374, SN74LVTH162374 datasheet (Rev. M) 2006/11/18
* SMD SN54LVTH162374-SP SMD 5962-98542 2016/07/08
Application brief DLA Approved Optimizations for QML Products (Rev. A) PDF | HTML 2024/06/05
White paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 (Rev. A) PDF | HTML 2024/04/30
Selection guide TI Space Products (Rev. J) 2024/02/12
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing (Rev. A) 2023/08/31
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 2022/12/15
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations (Rev. A) PDF | HTML 2022/11/17
Application note Single-Event Effects Confidence Interval Calculations (Rev. A) PDF | HTML 2022/10/19
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 2021/07/26
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002/05/22
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002/05/10
Selection guide Advanced Bus Interface Logic Selection Guide 2001/01/09
Application note LVT-to-LVTH Conversion 1998/12/08
Application note LVT Family Characteristics (Rev. A) 1998/03/01
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997/08/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01
Application note Live Insertion 1996/10/01
Application note Understanding Advanced Bus-Interface Products Design Guide 1996/05/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

SN54LVTH162374 IBIS Model

SCEM526.ZIP (9 KB) - IBIS Model
패키지 CAD 기호, 풋프린트 및 3D 모델
CFP (WD) 48 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상