SN74LVTH182512-EP

ACTIVO

Dispositivos de prueba de exploración ABT de 3.3 V con transceptores de bus universales de 18 bits d

Detalles del producto

Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Damping resistors, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Damping resistors, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
TSSOP (DGG) 64 137.7 mm² 17 x 8.1
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Members of the Texas Instruments SCOPE™ Family of Testability Products
  • Members of the Texas Instruments Widebus™ Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • UBT™ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of SN74LVTH182512 Device Has Equivalent 25- Series Resistors, So No External Resistors Are Required
  • SCOPE™ Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Compatible With the IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
SCOPE, Widebus, and UBT are trademarks of Texas Instruments.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Members of the Texas Instruments SCOPE™ Family of Testability Products
  • Members of the Texas Instruments Widebus™ Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • UBT™ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of SN74LVTH182512 Device Has Equivalent 25- Series Resistors, So No External Resistors Are Required
  • SCOPE™ Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Compatible With the IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
SCOPE, Widebus, and UBT are trademarks of Texas Instruments.

The SN74LVTH18512 and SN74LVTH182512 scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE™ testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE™ universal bus transceivers.

Data flow in each direction is controlled by output-enable (OEAB\ and OEBA\), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A data is stored on a low-to-high transition of CLKAB. When OEAB\ is low, the B outputs are active. When OEAB\ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA\, LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE™ universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of SN74LVTH182512, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

The SN74LVTH18512 and SN74LVTH182512 scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE™ testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE™ universal bus transceivers.

Data flow in each direction is controlled by output-enable (OEAB\ and OEBA\), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A data is stored on a low-to-high transition of CLKAB. When OEAB\ is low, the B outputs are active. When OEAB\ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA\, LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE™ universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of SN74LVTH182512, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

Descargar Ver vídeo con transcripción Video

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 17
Tipo Título Fecha
* Data sheet SN74LVTH18512-EP, SN74LVTH182512-EP datasheet 10 nov 2003
* VID SN74LVTH182512-EP VID V6204730 21 jun 2016
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 jul 2021
Selection guide Logic Guide (Rev. AB) 12 jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 dic 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 ene 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 ago 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 may 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 may 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 ene 2001
Application note LVT-to-LVTH Conversion 08 dic 1998
Application note LVT Family Characteristics (Rev. A) 01 mar 1998
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 ago 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 oct 1996
Application note Live Insertion 01 oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 may 1996

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Modelo de simulación

BSDL Model of SN74LVTH182512

SCTM039.ZIP (3 KB) - BSDL Model
Encapsulado Pines Símbolos CAD, huellas y modelos 3D
TSSOP (DGG) 64 Ultra Librarian

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos