SN74LVTH18514

ACTIVO

Dispositivos de prueba de exploración ABT de 3.3 V con transceptores de bus universales de 20 bits

Detalles del producto

Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 20 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 20 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DGG) 64 137.7 mm² 17 x 8.1
  • Members of the Texas Instruments (TITM) SCOPETM Family of Testability Products
  • Members of the TI WidebusTM Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of 'LVTH182514 Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • Compatible With the IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • SCOPETM Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Package Options Include 64-Pin Plastic Thin Shrink Small-Outline (DGG) and 64-Pin Ceramic Dual Flat (HKC) Packages Using 0.5-mm Center-to-Center Spacings

    SCOPE, Widebus, UBT, and TI are trademarks of Texas Instruments Incorporated.

  • Members of the Texas Instruments (TITM) SCOPETM Family of Testability Products
  • Members of the TI WidebusTM Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of 'LVTH182514 Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • Compatible With the IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • SCOPETM Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Package Options Include 64-Pin Plastic Thin Shrink Small-Outline (DGG) and 64-Pin Ceramic Dual Flat (HKC) Packages Using 0.5-mm Center-to-Center Spacings

    SCOPE, Widebus, UBT, and TI are trademarks of Texas Instruments Incorporated.

The 'LVTH18514 and 'LVTH182514 scan test devices with 20-bit universal bus transceivers are members of the TI SCOPE testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self-test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE universal bus transceivers.

Data flow in each direction is controlled by output-enable (OEAB\ and OEBA\), latch-enable (LEAB and LEBA), clock-enable (CLKENAB\ and CLKENBA\), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched while CLKENAB\ is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and CLKENAB\ is low, A data is stored on a low-to-high transition of CLKAB. When OEAB\ is low, the B outputs are active. When OEAB\ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow, but uses the OEBA\, LEBA, CLKENBA\, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions, such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of 'LVTH182514, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

The SN54LVTH18514 and SN54LVTH182514 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH18514 and SN74LVTH182514 are characterized for operation from -40°C to 85°C.

A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA\, LEBA, CLKENBA\, and CLKBA.

Output level before the indicated steady-state input conditions were established

The 'LVTH18514 and 'LVTH182514 scan test devices with 20-bit universal bus transceivers are members of the TI SCOPE testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self-test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE universal bus transceivers.

Data flow in each direction is controlled by output-enable (OEAB\ and OEBA\), latch-enable (LEAB and LEBA), clock-enable (CLKENAB\ and CLKENBA\), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched while CLKENAB\ is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and CLKENAB\ is low, A data is stored on a low-to-high transition of CLKAB. When OEAB\ is low, the B outputs are active. When OEAB\ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow, but uses the OEBA\, LEBA, CLKENBA\, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions, such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of 'LVTH182514, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

The SN54LVTH18514 and SN54LVTH182514 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH18514 and SN74LVTH182514 are characterized for operation from -40°C to 85°C.

A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA\, LEBA, CLKENBA\, and CLKBA.

Output level before the indicated steady-state input conditions were established

Descargar Ver vídeo con transcripción Video

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 19
Tipo Título Fecha
* Data sheet 3.3-V ABT Scan Test Devices With 20-Bit Universal Bus Transceivers datasheet (Rev. C) 29 mar 1998
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 jul 2021
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) 17 sep 2018
Selection guide Logic Guide (Rev. AB) 12 jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 dic 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 ene 2007
EVM User's guide LASP Demo Board User's Guide 01 nov 2005
Application note Programming CPLDs Via the 'LVT8986 LASP 01 nov 2005
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 ago 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 may 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 may 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 ene 2001
Application note LVT-to-LVTH Conversion 08 dic 1998
Application note LVT Family Characteristics (Rev. A) 01 mar 1998
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 ago 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 oct 1996
Application note Live Insertion 01 oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 may 1996

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Modelo de simulación

BSDL Model of SN74LVTH18514

SCTM034.ZIP (3 KB) - BSDL Model
Modelo de simulación

SN74LVTH18514 IBIS Model

SCEM092.ZIP (16 KB) - IBIS Model
Encapsulado Pines Símbolos CAD, huellas y modelos 3D
TSSOP (DGG) 64 Ultra Librarian

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos