ホーム インターフェイス その他のインターフェイス

SN74LVT8980A-EP

アクティブ

エンハンスド製品、IEEE STD 1149.1 (JTAG) TAP マスターをサポートする組込みテストバス・コントローラ

製品詳細

Protocols JTAG Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
Protocols JTAG Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
SOIC (DW) 24 159.65 mm² 15.5 x 10.3
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Members of Texas Instruments Broad Family of Testability Products Supporting IEEE Std 1149.1-1990 (JTAG) Test Access Port (TAP) and Boundary-Scan Architecture
  • Provide Built-In Access to IEEE Std 1149.1 Scan-Accessible Test/Maintenance Facilities at Board and System Levels
  • While Powered at 3.3 V, the TAP Interface Is Fully 5-V Tolerant for Mastering Both 5-V and/or 3.3-V IEEE Std 1149.1 Targets
  • Simple Interface to Low-Cost 3.3-V Microprocessors/Microcontrollers Via 8-Bit Asynchronous Read/Write Data Bus
  • Easy Programming Via Scan-Level Command Set and Smart TAP Control
  • Transparently Generate Protocols to Support Multidrop TAP Configurations Using TI’s Addressable Scan Port
  • Flexible TCK Generator Provides Programmable Division, Gated-TCK, and Free-Running-TCK Modes
  • Discrete TAP Control Mode Supports Arbitrary TMS/TDI Sequences for Noncompliant Targets
  • Programmable 32-Bit Test Cycle Counter Allows Virtually Unlimited Scan/Test Length
  • Accommodate Target Retiming (Pipeline) Delays of up to 15 TCK Cycles
  • Test Output Enable (TOE)\ Allows for External Control of TAP Signals
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL) at TAP Support Backplane Interface and/or High Fanout

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Members of Texas Instruments Broad Family of Testability Products Supporting IEEE Std 1149.1-1990 (JTAG) Test Access Port (TAP) and Boundary-Scan Architecture
  • Provide Built-In Access to IEEE Std 1149.1 Scan-Accessible Test/Maintenance Facilities at Board and System Levels
  • While Powered at 3.3 V, the TAP Interface Is Fully 5-V Tolerant for Mastering Both 5-V and/or 3.3-V IEEE Std 1149.1 Targets
  • Simple Interface to Low-Cost 3.3-V Microprocessors/Microcontrollers Via 8-Bit Asynchronous Read/Write Data Bus
  • Easy Programming Via Scan-Level Command Set and Smart TAP Control
  • Transparently Generate Protocols to Support Multidrop TAP Configurations Using TI’s Addressable Scan Port
  • Flexible TCK Generator Provides Programmable Division, Gated-TCK, and Free-Running-TCK Modes
  • Discrete TAP Control Mode Supports Arbitrary TMS/TDI Sequences for Noncompliant Targets
  • Programmable 32-Bit Test Cycle Counter Allows Virtually Unlimited Scan/Test Length
  • Accommodate Target Retiming (Pipeline) Delays of up to 15 TCK Cycles
  • Test Output Enable (TOE)\ Allows for External Control of TAP Signals
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL) at TAP Support Backplane Interface and/or High Fanout

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

The SN74LVT8980A embedded test-bus controllers (eTBCs) are members of the TI broad family of testability integrated circuits. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit assemblies. Unlike most other devices of this family, the eTBCs are not boundary-scannable devices; rather, their function is to master an IEEE Std 1149.1 (JTAG) test access port (TAP) under the command of an embedded host microprocessor/microcontroller. Thus, the eTBCs enable the practical and effective use of the IEEE Std 1149.1 test-access infrastructure to support embedded/built-in test, emulation, and configuration/maintenance facilities at board and system levels.

The eTBCs master all TAP signals required to support one 4- or 5-wire IEEE Std 1149.1 serial test bus: test clock (TCK), test mode select (TMS), test data input (TDI), test data output (TDO), and test reset (TRST)\. All such signals can be connected directly to the associated target IEEE Std 1149.1 devices without need for additional logic or buffering. However, as well as being directly connected, the TMS, TDI, and TDO signals can be connected to distant target IEEE Std 1149.1 devices via a pipeline, with a retiming delay of up to 15 TCK cycles; the eTBCs automatically handle all associated serial-data justification.

Conceptually, the eTBCs operate as simple 8-bit memory- or I/O-mapped peripherals to a microprocessor/microcontroller (host). High-level commands and parallel data are passed to/from the eTBCs via their generic host interface, which includes an 8-bit data bus (D7-D0) and a 3-bit address bus (A2-A0). Read/write select (R/W\) and strobe (STRB)\ signals are implemented so that the critical host-interface timing is independent of the CLKIN period. An asynchronous ready (RDY) indicator is provided to hold off, or insert wait states into, a host read/write cycle when the eTBCs cannot respond immediately to the requested read/write operation.

High-level commands are issued by the host to cause the eTBCs to generate the TMS sequences necessary to move the test bus from any stable TAP-controller state to any other such stable state, to scan instruction or data through test registers in target devices, and/or to execute instructions in the Run-Test/Idle TAP state. A 32-bit counter can be programmed to allow a predetermined number of scan or execute cycles.

During scan operations, serial data that appears at the TDI input is transferred into a serial to 4 × 8-bit-parallel first-in/first-out (FIFO) read buffer, which can then be read by the host to obtain the return serial-data stream up to eight bits at a time. Serial data that is to be transmitted from the TDO output is written by the host, up to eight bits at a time, to a 4 × 8-bit-parallel to serial FIFO write buffer.

In addition to such simple state-movement, scan, and run-test operations, the eTBCs support several additional commands that provide for input-only scans, output-only scans, recirculate scans (in which TDI is mirrored back to TDO), and a scan mode that generates the protocols used to support multidrop TAP configurations using TI’s addressable scan port. Two loopback modes also are supported that allow the microprocessor/microcontroller host to monitor the TDO or TMS data streams output by the eTBCs.

The eTBCs’ flexible clocking architecture allows the user to choose between free-running (in which the TCK always follows CLKIN) and gated modes (in which the TCK output is held static except during state-move, run-test, or scan cycles) as well as to divide down TCK from CLKIN. A discrete mode also is available in which the TAP is driven strictly by read/write cycles under full control of the microprocessor/microcontroller host. These features ensure that virtually any IEEE Std 1149.1 target device or device chain can be serviced by the eTBCs, even where such may not fully comply to IEEE Std 1149.1.

While most operations of the eTBCs are synchronous to CLKIN, a test-output enable (TOE)\ is provided for output control of the TAP outputs, and a reset (RST)\ input is provided for hardware reset of the eTBCs. The former can be used to disable the eTBCs so that an external controller can master the associated IEEE Std 1149.1 test bus.

The SN74LVT8980A embedded test-bus controllers (eTBCs) are members of the TI broad family of testability integrated circuits. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit assemblies. Unlike most other devices of this family, the eTBCs are not boundary-scannable devices; rather, their function is to master an IEEE Std 1149.1 (JTAG) test access port (TAP) under the command of an embedded host microprocessor/microcontroller. Thus, the eTBCs enable the practical and effective use of the IEEE Std 1149.1 test-access infrastructure to support embedded/built-in test, emulation, and configuration/maintenance facilities at board and system levels.

The eTBCs master all TAP signals required to support one 4- or 5-wire IEEE Std 1149.1 serial test bus: test clock (TCK), test mode select (TMS), test data input (TDI), test data output (TDO), and test reset (TRST)\. All such signals can be connected directly to the associated target IEEE Std 1149.1 devices without need for additional logic or buffering. However, as well as being directly connected, the TMS, TDI, and TDO signals can be connected to distant target IEEE Std 1149.1 devices via a pipeline, with a retiming delay of up to 15 TCK cycles; the eTBCs automatically handle all associated serial-data justification.

Conceptually, the eTBCs operate as simple 8-bit memory- or I/O-mapped peripherals to a microprocessor/microcontroller (host). High-level commands and parallel data are passed to/from the eTBCs via their generic host interface, which includes an 8-bit data bus (D7-D0) and a 3-bit address bus (A2-A0). Read/write select (R/W\) and strobe (STRB)\ signals are implemented so that the critical host-interface timing is independent of the CLKIN period. An asynchronous ready (RDY) indicator is provided to hold off, or insert wait states into, a host read/write cycle when the eTBCs cannot respond immediately to the requested read/write operation.

High-level commands are issued by the host to cause the eTBCs to generate the TMS sequences necessary to move the test bus from any stable TAP-controller state to any other such stable state, to scan instruction or data through test registers in target devices, and/or to execute instructions in the Run-Test/Idle TAP state. A 32-bit counter can be programmed to allow a predetermined number of scan or execute cycles.

During scan operations, serial data that appears at the TDI input is transferred into a serial to 4 × 8-bit-parallel first-in/first-out (FIFO) read buffer, which can then be read by the host to obtain the return serial-data stream up to eight bits at a time. Serial data that is to be transmitted from the TDO output is written by the host, up to eight bits at a time, to a 4 × 8-bit-parallel to serial FIFO write buffer.

In addition to such simple state-movement, scan, and run-test operations, the eTBCs support several additional commands that provide for input-only scans, output-only scans, recirculate scans (in which TDI is mirrored back to TDO), and a scan mode that generates the protocols used to support multidrop TAP configurations using TI’s addressable scan port. Two loopback modes also are supported that allow the microprocessor/microcontroller host to monitor the TDO or TMS data streams output by the eTBCs.

The eTBCs’ flexible clocking architecture allows the user to choose between free-running (in which the TCK always follows CLKIN) and gated modes (in which the TCK output is held static except during state-move, run-test, or scan cycles) as well as to divide down TCK from CLKIN. A discrete mode also is available in which the TAP is driven strictly by read/write cycles under full control of the microprocessor/microcontroller host. These features ensure that virtually any IEEE Std 1149.1 target device or device chain can be serviced by the eTBCs, even where such may not fully comply to IEEE Std 1149.1.

While most operations of the eTBCs are synchronous to CLKIN, a test-output enable (TOE)\ is provided for output control of the TAP outputs, and a reset (RST)\ input is provided for hardware reset of the eTBCs. The former can be used to disable the eTBCs so that an external controller can master the associated IEEE Std 1149.1 test bus.

ダウンロード 字幕付きのビデオを表示 ビデオ

お客様が関心を持ちそうな類似品

open-in-new 代替品と比較
比較対象デバイスと類似の機能
SN74ACT245 アクティブ TTL 互換 CMOS 入力、3 ステート出力、オクタル バス トランシーバ Voltage range (4.5V to 5.5V)

技術資料

star =TI が選定したこの製品の主要ドキュメント
結果が見つかりませんでした。検索条件をクリアしてから、再度検索を試してください。
18 をすべて表示
種類 タイトル 最新の英語版をダウンロード 日付
* データシート SN74LVT8980A-EP データシート (Rev. A) 2003年 10月 29日
* VID SN74LVT8980A-EP VID V6203668 2016年 6月 21日
アプリケーション・ノート Implications of Slow or Floating CMOS Inputs (Rev. E) 2021年 7月 26日
セレクション・ガイド Logic Guide (Rev. AB) 2017年 6月 12日
アプリケーション・ノート Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
セレクション・ガイド ロジック・ガイド (Rev. AA 翻訳版) 最新英語版 (Rev.AB) 2014年 11月 6日
ユーザー・ガイド LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
アプリケーション・ノート Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
アプリケーション・ノート TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
アプリケーション・ノート 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002年 5月 22日
アプリケーション・ノート Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
セレクション・ガイド Advanced Bus Interface Logic Selection Guide 2001年 1月 9日
アプリケーション・ノート LVT-to-LVTH Conversion 1998年 12月 8日
アプリケーション・ノート LVT Family Characteristics (Rev. A) 1998年 3月 1日
アプリケーション・ノート Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997年 8月 1日
アプリケーション・ノート Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
アプリケーション・ノート Live Insertion 1996年 10月 1日
アプリケーション・ノート Understanding Advanced Bus-Interface Products Design Guide 1996年 5月 1日

設計および開発

その他のアイテムや必要なリソースを参照するには、以下のタイトルをクリックして詳細ページをご覧ください。

シミュレーション・ツール

PSPICE-FOR-TI — TI Design / シミュレーション・ツール向け PSpice®

PSpice® for TI は、各種アナログ回路の機能評価に役立つ、設計とシミュレーション向けの環境です。設計とシミュレーションに適したこのフル機能スイートは、Cadence® のアナログ分析エンジンを使用しています。PSpice for TI は無償で使用でき、アナログや電源に関する TI の製品ラインアップを対象とする、業界でも有数の大規模なモデル・ライブラリが付属しているほか、選択された一部のアナログ動作モデルも利用できます。

設計とシミュレーション向けの環境である PSpice for TI (...)
シミュレーション・ツール

TINA-TI — SPICE ベースのアナログ・シミュレーション・プログラム

TINA-TI は、DC 解析、過渡解析、周波数ドメイン解析など、SPICE の標準的な機能すべてを搭載しています。TINA には多彩な後処理機能があり、結果を必要なフォーマットにすることができます。仮想計測機能を使用すると、入力波形を選択し、回路ノードの電圧や波形を仮想的に測定することができます。TINA の回路キャプチャ機能は非常に直観的であり、「クイックスタート」を実現できます。

TINA-TI をインストールするには、約 500MB が必要です。インストールは簡単です。必要に応じてアンインストールも可能です。(そのようなことはないと思いますが)

TINA は DesignSoft (...)

ユーザー ガイド: PDF
英語版 (Rev.A): PDF
パッケージ ピン数 CAD シンボル、フットプリント、および 3D モデル
SOIC (DW) 24 Ultra Librarian

購入と品質

記載されている情報:
  • RoHS
  • REACH
  • デバイスのマーキング
  • リード端子の仕上げ / ボールの原材料
  • MSL 定格 / ピーク リフロー
  • MTBF/FIT 推定値
  • 使用原材料
  • 認定試験結果
  • 継続的な信頼性モニタ試験結果
記載されている情報:
  • ファブの拠点
  • 組み立てを実施した拠点

サポートとトレーニング

TI E2E™ フォーラムでは、TI のエンジニアからの技術サポートを提供

コンテンツは、TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。使用条件をご確認ください。

TI 製品の品質、パッケージ、ご注文に関するお問い合わせは、TI サポートをご覧ください。​​​​​​​​​​​​​​

ビデオ