SLYU067 December   2023 DRV5011 , DRV5012 , DRV5013 , DRV5013-Q1 , DRV5015 , DRV5015-Q1 , DRV5021 , DRV5021-Q1 , DRV5023 , DRV5023-Q1 , DRV5032 , DRV5033 , DRV5033-Q1 , DRV5053 , DRV5053-Q1 , DRV5055 , DRV5055-Q1 , DRV5056 , DRV5056-Q1 , DRV5057 , DRV5057-Q1 , TMAG3001 , TMAG5110 , TMAG5110-Q1 , TMAG5111 , TMAG5111-Q1 , TMAG5115 , TMAG5123 , TMAG5123-Q1 , TMAG5124 , TMAG5124-Q1 , TMAG5131-Q1 , TMAG5170 , TMAG5170-Q1 , TMAG5170D-Q1 , TMAG5173-Q1 , TMAG5231 , TMAG5253 , TMAG5273 , TMAG6180-Q1 , TMAG6181-Q1 , TMCS1107 , TMCS1108

 

  1.   1
  2.   Trademarks
  3.   Abstract
  4. 1Introduction and Features Overview
    1. 1.1 Simulating Magnetic Fields Tool Introduction
  5. 2Simulation Interface
    1. 2.1 Getting Started
    2. 2.2 Creating a New Design
    3. 2.3 Selecting a Sensor
    4. 2.4 Sensor Output Types
  6. 3Simulation Environment
  7. 4Simulation Inputs
    1. 4.1 Magnet Input Fields
      1. 4.1.1 Magnet Specifications
      2. 4.1.2 Magnet Geometry
      3. 4.1.3 Magnet Motion
      4. 4.1.4 Magnet Rotation
      5. 4.1.5 Hinge Magnet Motion
      6. 4.1.6 Linear Magnet Motion
      7. 4.1.7 Joystick Magnet Motion
    2. 4.2 Sensor Input Fields
      1. 4.2.1 Linear Sensor Format
      2. 4.2.2 Latch and Switch Format
      3. 4.2.3 Sensor Position
    3. 4.3 Simulation Settings
  8. 5Simulation Results
  9. 6Parametric Sweeps
  10. 7Comparing Designs
  11. 8Summary
  12. 9References
  13.   A Appendix
    1.     A.1 Sensor Placement
    2.     A.2 Magnet Materials
    3.     A.3 Rotation Tips

Linear Sensor Format

GUID-20231114-SS0I-TB36-J9JM-0XWBJWNHVWG2-low.svgFigure 4-11 Linear Sensor Input Parameters
  1. Oderable Part Number: Within the product family there can exist a variety of sensitivity options and package variants. Each of these options can be selected from and used to run a simulation. The location of the sensing element within the package is accounted for automatically. TI recommends referring to the product data sheet for exact sensor locations when configuring simulations.
  2. Applied Vcc: A value within this range must be selected. Setting this value is used to determine the linear output range of the device where appropriate. Shown adjacent to this field are the maximum and minimum operating values for this entry. This field also adjusts the sensitivity in the case of ratio metric devices.
  3. Max Input: This field changes the sensitivity range of the sensor and updates any related fields accordingly. A programmable sensitivity range is common for sensors which utilize a digital interface. For example, TMAG5273A1 can be programmed to either a ±40 mT or a ±80 mT input range.
  4. Temperature Compensation: Many digital interface devices also offer the ability to choose a temperature compensation scheme. Settings here often match the typical values provided in Table 4-1.

  5. Averaging: Another feature of digital interface devices is the ability to use averaging to effectively reduce the observed noise from the sensor. This over-sampling function effectively multiplies the typical input referred noise by 1/√n, where n is the number of averages. Oversampling is a helpful method to reduce the effect of random noise sources.