SN74ABT162823A

ACTIVO

Biestables de interfaz de bus de 18 bits con salidas de 3 estados

Detalles del producto

Number of channels 18 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 80000 Features Balanced outputs, Damping resistors, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 85 Rating Catalog
Number of channels 18 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 80000 Features Balanced outputs, Damping resistors, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 85 Rating Catalog
SSOP (DL) 56 190.647 mm² 18.42 x 10.35
  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 25- Series Resistors So No External Resistors Are Required
  • Typical VOLP (Output Ground Bounce) <1 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout

Widebus is a trademark of Texas Instruments.

  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 25- Series Resistors So No External Resistors Are Required
  • Typical VOLP (Output Ground Bounce) <1 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout

Widebus is a trademark of Texas Instruments.

These 18-bit bus-interface flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The ’ABT162823A devices can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN)\ input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN\ high disables the clock buffer, thus latching the outputs. Taking the clear (CLR)\ input low causes the Q outputs to go low independently of the clock.

A buffered output-enable (OE)\ input places the nine outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE\ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

To ensure the high-impedance state during power up or power down, OE\ shall be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These 18-bit bus-interface flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The ’ABT162823A devices can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN)\ input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN\ high disables the clock buffer, thus latching the outputs. Taking the clear (CLR)\ input low causes the Q outputs to go low independently of the clock.

A buffered output-enable (OE)\ input places the nine outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE\ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

To ensure the high-impedance state during power up or power down, OE\ shall be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Descargar Ver vídeo con transcripción Video

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 20
Tipo Título Fecha
* Data sheet SN54ABT162823A, SN74ABT162823A datasheet (Rev. B) 08 jun 2004
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 dic 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 jul 2021
Selection guide Logic Guide (Rev. AB) 12 jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 dic 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 ene 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 ago 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 may 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 ene 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 ago 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 jun 1997
Application note Designing With Logic (Rev. C) 01 jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 dic 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 oct 1996
Application note Live Insertion 01 oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 may 1996

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Encapsulado Pines Símbolos CAD, huellas y modelos 3D
SSOP (DL) 56 Ultra Librarian

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos