인터페이스 기타 인터페이스

SN75LBC968

활성

능동 종단을 지원하는 9채널 버스 트랜시버

제품 상세 정보

Protocols Catalog Rating Catalog Operating temperature range (°C) 0 to 70
Protocols Catalog Rating Catalog Operating temperature range (°C) 0 to 70
SSOP (DL) 56 190.647 mm² 18.42 x 10.35
  • Nine Single-Ended SCSI Transceiver Channels With Active Termination
  • Programmable Drivers Provide Active Negation (Totem Pole) or Wired-OR (Open Drain) Outputs
  • 24-mA Current-Mode Active Termination With Common Nine-Channel Bus Enable
  • Low Output Capacitance Presented to SCSI Bus, 13.5 pF Typ
  • 3.3 V Compatible Logic Inputs Provide Bridge from 3 V Controllers to 5 V SCSI Bus
  • Designed to Operate at 10-Million Data Transfers Per Second (Fast-SCSI)
  • Controlled Driver Rise and Fall Times
         5 ns Min
  • High-Receiver Input-Voltage Hysteresis
         500 mV Typ
  • Receiver Input-Noise Pulse Filter
         5 ns Typ
  • Each Driver and Receiver Meets ANSI X3.131-1994 (SCSI-2) and the Proposed SCSI-3 Standards
  • Power-Up/Power-Down Glitch Protection
  • High Impedance Driver With VCC at 0 V

LinBiCMOS is a trademark of Texas Instruments Incorporated.

  • Nine Single-Ended SCSI Transceiver Channels With Active Termination
  • Programmable Drivers Provide Active Negation (Totem Pole) or Wired-OR (Open Drain) Outputs
  • 24-mA Current-Mode Active Termination With Common Nine-Channel Bus Enable
  • Low Output Capacitance Presented to SCSI Bus, 13.5 pF Typ
  • 3.3 V Compatible Logic Inputs Provide Bridge from 3 V Controllers to 5 V SCSI Bus
  • Designed to Operate at 10-Million Data Transfers Per Second (Fast-SCSI)
  • Controlled Driver Rise and Fall Times
         5 ns Min
  • High-Receiver Input-Voltage Hysteresis
         500 mV Typ
  • Receiver Input-Noise Pulse Filter
         5 ns Typ
  • Each Driver and Receiver Meets ANSI X3.131-1994 (SCSI-2) and the Proposed SCSI-3 Standards
  • Power-Up/Power-Down Glitch Protection
  • High Impedance Driver With VCC at 0 V

LinBiCMOS is a trademark of Texas Instruments Incorporated.

The SN75LBC968 is a nine-channel transceiver with active termination that drives and receives the signals from the single-ended, parallel data buses such as the Small Computer-Systems Interface (SCSI) bus. The features of the line drivers, receivers, and active-termination circuits provide the optimum signal-to-noise ratios for reliable data transmission. Integration of the termination and transceivers in the LinBiCMOS™ process provides the necessary analog-circuit performance, has low quiescent power, and reduces the capacitance presented to the bus over separate termination and I/O circuits.

The transceivers of the SN75LBC968 can be enabled to function as totem-pole or open-drain outputs. The open-drain mode drives the wired-OR lines of SCSI (BSY, SEL, and RST) by inputting the data to the direction control input DE/RE instead of the A input. When driving the data through the A input, the outputs become totem poles and provide active signal negation for a higher voltage level on low-to-high signal transitions on heavily loaded buses. In either mode, the turnon and turnoff output transition times are limited to minimize crosstalk through capacitive coupling to adjacent lines and RF emissions from the cable. The receivers are also designed for optimum analog performance by precisely controlling the input-voltage thresholds, providing wide input-voltage hysteresis and including an input-noise filter. These features significantly increase the likelihood of detecting only the desired data signal and rejecting noise.

The communication between the SN75LBC968 and the controller can be accomplished at 3.3-V logic levels provided that the VCC1 input connects to the same supply rail as the controller. This provides a bridge from the lower-voltage circuit and the 5-V SCSI bus. The SN75LBC968 also removes the need for special I/O buffers (and associated power dissipation) on the controller itself. The SN75LBC968 must be used with a SCSI controller with support for Differential SCSI.

The integrated, current-mode, active termination supplies a constant 24 mA of current (TERMPWR) to the bus when the bus voltage falls below 2.5 V. This makes the next low-to-high (negation) signal transition independent of the low-level (asserted) bus voltage, unlike voltage-mode terminators. The termination current is provided through the TE input and from TERMPWR and can be disabled by letting the TE input float or by connecting it to ground. The termination circuitry is independent from the line drivers and receivers and VCC or VCC1. Operational termination is present as long as TERMPWR is applied.

The switching speeds of the SN75LBC968 are sufficient to transfer data over the data bus at ten million transfers per second (Fast-SCSI). The specification, tsk(lim), is for system skew budgeting and maintenance of bus set-up and hold times. The device is available in the space-efficient shrink-small-outline package (SSOP) with 25-mil lead pitch. The SN75LBC968 meets or exceeds the requirements of ANSI X3.131–1994 (SCSI-2) and the proposed SPI (SCSI-3) standards, and is characterized for operation from 0°C to 70°C.

The SN75LBC968 is a nine-channel transceiver with active termination that drives and receives the signals from the single-ended, parallel data buses such as the Small Computer-Systems Interface (SCSI) bus. The features of the line drivers, receivers, and active-termination circuits provide the optimum signal-to-noise ratios for reliable data transmission. Integration of the termination and transceivers in the LinBiCMOS™ process provides the necessary analog-circuit performance, has low quiescent power, and reduces the capacitance presented to the bus over separate termination and I/O circuits.

The transceivers of the SN75LBC968 can be enabled to function as totem-pole or open-drain outputs. The open-drain mode drives the wired-OR lines of SCSI (BSY, SEL, and RST) by inputting the data to the direction control input DE/RE instead of the A input. When driving the data through the A input, the outputs become totem poles and provide active signal negation for a higher voltage level on low-to-high signal transitions on heavily loaded buses. In either mode, the turnon and turnoff output transition times are limited to minimize crosstalk through capacitive coupling to adjacent lines and RF emissions from the cable. The receivers are also designed for optimum analog performance by precisely controlling the input-voltage thresholds, providing wide input-voltage hysteresis and including an input-noise filter. These features significantly increase the likelihood of detecting only the desired data signal and rejecting noise.

The communication between the SN75LBC968 and the controller can be accomplished at 3.3-V logic levels provided that the VCC1 input connects to the same supply rail as the controller. This provides a bridge from the lower-voltage circuit and the 5-V SCSI bus. The SN75LBC968 also removes the need for special I/O buffers (and associated power dissipation) on the controller itself. The SN75LBC968 must be used with a SCSI controller with support for Differential SCSI.

The integrated, current-mode, active termination supplies a constant 24 mA of current (TERMPWR) to the bus when the bus voltage falls below 2.5 V. This makes the next low-to-high (negation) signal transition independent of the low-level (asserted) bus voltage, unlike voltage-mode terminators. The termination current is provided through the TE input and from TERMPWR and can be disabled by letting the TE input float or by connecting it to ground. The termination circuitry is independent from the line drivers and receivers and VCC or VCC1. Operational termination is present as long as TERMPWR is applied.

The switching speeds of the SN75LBC968 are sufficient to transfer data over the data bus at ten million transfers per second (Fast-SCSI). The specification, tsk(lim), is for system skew budgeting and maintenance of bus set-up and hold times. The device is available in the space-efficient shrink-small-outline package (SSOP) with 25-mil lead pitch. The SN75LBC968 meets or exceeds the requirements of ANSI X3.131–1994 (SCSI-2) and the proposed SPI (SCSI-3) standards, and is characterized for operation from 0°C to 70°C.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet 9-Channel Bus Transceiver With Active Termination datasheet (Rev. E) 2005/08/09

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
시뮬레이션 툴

TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
사용 설명서: PDF
패키지 CAD 기호, 풋프린트 및 3D 모델
SSOP (DL) 56 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상