인터페이스 UART

TL16C2552

활성

16바이트 FIFO를 제공하는 1.8V~5V 듀얼 UART

제품 상세 정보

Number of channels 2 FIFO (Byte) 16 Rx FIFO trigger levels (#) 4 Programmable FIFO trigger levels No CPU interface X86 Baud rate at Vcc = 2.5 V & with 16x sampling (max) (Mbps) 1 Baud rate at Vcc = 1.8 V & with 16x sampling (max) (Mbps) 0.625 Baud rate at Vcc = 3.3 V & with 16x sampling (max) (Mbps) 1.25 Baud rate at Vcc = 5 V & with 16x sampling (max) (Mbps) 1.5 Operating voltage (V) 1.8, 2.5, 3.3, 5 Auto RTS/CTS Yes Rating Catalog Operating temperature range (°C) -40 to 85
Number of channels 2 FIFO (Byte) 16 Rx FIFO trigger levels (#) 4 Programmable FIFO trigger levels No CPU interface X86 Baud rate at Vcc = 2.5 V & with 16x sampling (max) (Mbps) 1 Baud rate at Vcc = 1.8 V & with 16x sampling (max) (Mbps) 0.625 Baud rate at Vcc = 3.3 V & with 16x sampling (max) (Mbps) 1.25 Baud rate at Vcc = 5 V & with 16x sampling (max) (Mbps) 1.5 Operating voltage (V) 1.8, 2.5, 3.3, 5 Auto RTS/CTS Yes Rating Catalog Operating temperature range (°C) -40 to 85
PLCC (FN) 44 307.3009 mm² 17.53 x 17.53
  • Programmable Auto-RTS and Auto-CTS
  • In Auto-CTS Mode, CTS Controls the Transmitter
  • In Auto-RTS Mode, RCV FIFO Contents, and Threshold Control RTS
  • Serial and Modem Control Outputs Drive a RJ11 Cable Directly When Equipment is on the Same Power Drop
  • Capable of Running With All Existing TL16C450 Software
  • After Reset, All Registers Are Identical to the TL16C450 Register Set
  • Up to 24-MHz Clock Rate for up to 1.5-Mbaud Operation With VCC = 5 V
  • Up to 20-MHz Clock Rate for up to 1.25-Mbaud Operation With VCC = 3.3 V
  • Up to 16-MHz Clock Rate for up to 1-Mbaud Operation With VCC = 2.5 V
  • Up to 10-MHz Clock Rate for up to 625-kbaud Operation With VCC = 1.8 V
  • In the TL16C450 Mode, Hold and Shift Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
  • Programmable Baud Rate Generator Allows Division of Any Input Reference Clock by 1 to (216 - 1) and Generates an Internal 16 × Clock
  • Standard Asynchronous Communication Bits (Start, Stop, and Parity) Added to or Deleted From the Serial Data Stream
  • 5-V, 3.3-V, 2.5-V, and 1.8 V Operation
  • Independent Receiver Clock Input
  • Transmit, Receive, Line Status, and Data Set Interrupts Independently Controlled
  • Fully Programmable Serial Interface Characteristics:
    • 5-, 6-, 7-, or 8-Bit Characters
    • Even-, Odd-, or No-Parity Bit Generation and Detection
    • 1-, 1 ½, or 2-Stop Bit Generation
    • Baud Generation (dc to 1 Mbit/s)
  • False-Start Bit Detection
  • Complete Status Reporting Capabilities
  • 3-State Output TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
  • Line Break Generation and Detection
  • Internal Diagnostic Capabilities:
    • Loopback Controls for Communications Link Fault Isolation
    • Break, Parity, Overrun, and Framing Error Simulation
  • Fully Prioritized Interrupt System Controls
  • Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
  • Available in 44-Pin PLCC (FN) or 32-Pin QFN (RHB) Packages
  • Each UART's Internal Register Set May Be Written Concurrently to Save Setup Time
  • Multi-Function Output (MF) Allows Users to Select Among Several Functions, Saving Package Pins
  • APPLICATIONS
    • Point-of-Sale Terminals
    • Gaming Terminals
    • Portable Applications
    • Router Control
    • Cellular Data
    • Factory Automation

  • Programmable Auto-RTS and Auto-CTS
  • In Auto-CTS Mode, CTS Controls the Transmitter
  • In Auto-RTS Mode, RCV FIFO Contents, and Threshold Control RTS
  • Serial and Modem Control Outputs Drive a RJ11 Cable Directly When Equipment is on the Same Power Drop
  • Capable of Running With All Existing TL16C450 Software
  • After Reset, All Registers Are Identical to the TL16C450 Register Set
  • Up to 24-MHz Clock Rate for up to 1.5-Mbaud Operation With VCC = 5 V
  • Up to 20-MHz Clock Rate for up to 1.25-Mbaud Operation With VCC = 3.3 V
  • Up to 16-MHz Clock Rate for up to 1-Mbaud Operation With VCC = 2.5 V
  • Up to 10-MHz Clock Rate for up to 625-kbaud Operation With VCC = 1.8 V
  • In the TL16C450 Mode, Hold and Shift Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
  • Programmable Baud Rate Generator Allows Division of Any Input Reference Clock by 1 to (216 - 1) and Generates an Internal 16 × Clock
  • Standard Asynchronous Communication Bits (Start, Stop, and Parity) Added to or Deleted From the Serial Data Stream
  • 5-V, 3.3-V, 2.5-V, and 1.8 V Operation
  • Independent Receiver Clock Input
  • Transmit, Receive, Line Status, and Data Set Interrupts Independently Controlled
  • Fully Programmable Serial Interface Characteristics:
    • 5-, 6-, 7-, or 8-Bit Characters
    • Even-, Odd-, or No-Parity Bit Generation and Detection
    • 1-, 1 ½, or 2-Stop Bit Generation
    • Baud Generation (dc to 1 Mbit/s)
  • False-Start Bit Detection
  • Complete Status Reporting Capabilities
  • 3-State Output TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
  • Line Break Generation and Detection
  • Internal Diagnostic Capabilities:
    • Loopback Controls for Communications Link Fault Isolation
    • Break, Parity, Overrun, and Framing Error Simulation
  • Fully Prioritized Interrupt System Controls
  • Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
  • Available in 44-Pin PLCC (FN) or 32-Pin QFN (RHB) Packages
  • Each UART's Internal Register Set May Be Written Concurrently to Save Setup Time
  • Multi-Function Output (MF) Allows Users to Select Among Several Functions, Saving Package Pins
  • APPLICATIONS
    • Point-of-Sale Terminals
    • Gaming Terminals
    • Portable Applications
    • Router Control
    • Cellular Data
    • Factory Automation

The TL16C2552 is a dual universal asynchronous receiver and transmitter (UART). It incorporates the functionality of two TL16C550D UARTs, each UART having its own register set and FIFOs. The two UARTs share only the data bus interface and clock source, otherwise they operate independently. Another name for the UART function is Asynchronous Communications Element (ACE), and these terms will be used interchangeably. The bulk of this document describes the behavior of each ACE, with the understanding that two such devices are incorporated into the TL16C2552.

Each ACE is a speed and voltage range upgrade of the TL16C550C, which in turn is a functional upgrade of the TL16C450. Functionally equivalent to the TL16C450 on power up or reset (single character or TL16C450 mode), each ACE can be placed in an alternate FIFO mode. This relieves the CPU of excessive software overhead by buffering received and to be transmitted characters. Each receiver and transmitter store up to 16 bytes in their respective FIFOs, with the receive FIFO including three additional bits per byte for error status. In the FIFO mode, a selectable autoflow control feature can significantly reduce software overload and increase system efficiency by automatically controlling serial data flow using handshakes between the RTS output and CTS input, thus eliminating overruns in the receive FIFO.

Each ACE performs serial-to-parallel conversions on data received from a peripheral device or modem and stores the parallel data in its receive buffer or FIFO, and each ACE performs parallel-to-serial conversions on data sent from its CPU after storing the parallel data in its transmit buffer or FIFO. The CPU can read the status of either ACE at any time. Each ACE includes complete modem control capability and a processor interrupt system that can be tailored to the application.

Each ACE includes a programmable baud rate generator capable of dividing a reference clock with divisors of from 1 to 65535, thus producing a 16× internal reference clock for the transmitter and receiver logic. Each ACE accommodates up to a 1.5-Mbaud serial data rate (24-MHz input clock). As a reference point, that speed would generate a 667-ns bit time and a 6.7-µs character time (for 8,N,1 serial data), with the internal clock running at 24 MHz.

Each ACE has a TXRDY and RXRDY output that can be used to interface to a DMA controller.

The TL16C2552 is a dual universal asynchronous receiver and transmitter (UART). It incorporates the functionality of two TL16C550D UARTs, each UART having its own register set and FIFOs. The two UARTs share only the data bus interface and clock source, otherwise they operate independently. Another name for the UART function is Asynchronous Communications Element (ACE), and these terms will be used interchangeably. The bulk of this document describes the behavior of each ACE, with the understanding that two such devices are incorporated into the TL16C2552.

Each ACE is a speed and voltage range upgrade of the TL16C550C, which in turn is a functional upgrade of the TL16C450. Functionally equivalent to the TL16C450 on power up or reset (single character or TL16C450 mode), each ACE can be placed in an alternate FIFO mode. This relieves the CPU of excessive software overhead by buffering received and to be transmitted characters. Each receiver and transmitter store up to 16 bytes in their respective FIFOs, with the receive FIFO including three additional bits per byte for error status. In the FIFO mode, a selectable autoflow control feature can significantly reduce software overload and increase system efficiency by automatically controlling serial data flow using handshakes between the RTS output and CTS input, thus eliminating overruns in the receive FIFO.

Each ACE performs serial-to-parallel conversions on data received from a peripheral device or modem and stores the parallel data in its receive buffer or FIFO, and each ACE performs parallel-to-serial conversions on data sent from its CPU after storing the parallel data in its transmit buffer or FIFO. The CPU can read the status of either ACE at any time. Each ACE includes complete modem control capability and a processor interrupt system that can be tailored to the application.

Each ACE includes a programmable baud rate generator capable of dividing a reference clock with divisors of from 1 to 65535, thus producing a 16× internal reference clock for the transmitter and receiver logic. Each ACE accommodates up to a 1.5-Mbaud serial data rate (24-MHz input clock). As a reference point, that speed would generate a 667-ns bit time and a 6.7-µs character time (for 8,N,1 serial data), with the internal clock running at 24 MHz.

Each ACE has a TXRDY and RXRDY output that can be used to interface to a DMA controller.

다운로드

관심 가지실만한 유사 제품

open-in-new 대안 비교
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
TL16C752D 활성 64바이트 FIFO를 지원하는 듀얼 UART 64-Byte FIFO

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet 1.8-V to 5-V DUAL UART WITH 16-BYTE FIFOS datasheet (Rev. A) 2006/06/15

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​