전원 관리 멀티 채널 IC(PMIC)

TWL6041

활성

휴대용 애플리케이션을 위한 8채널 고품질 저전력 오디오 코덱

제품 상세 정보

Processor supplier Texas Instruments Processor name OMAP Regulated outputs (#) 8 Step-down DC/DC converter 0 Step-up DC/DC converter 0 LDO 2 Vin (min) (V) 2.3 Vin (max) (V) 5.5 Vout (min) (V) 1.8 Vout (max) (V) 2.1 Iout (max) (A) 0.01 Configurability Factory programmable Features Comm control Rating Catalog Operating temperature range (°C) -40 to 85 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.2 Shutdown current (ISD) (typ) (µA) 0.54 Product type Processor and FPGA
Processor supplier Texas Instruments Processor name OMAP Regulated outputs (#) 8 Step-down DC/DC converter 0 Step-up DC/DC converter 0 LDO 2 Vin (min) (V) 2.3 Vin (max) (V) 5.5 Vout (min) (V) 1.8 Vout (max) (V) 2.1 Iout (max) (A) 0.01 Configurability Factory programmable Features Comm control Rating Catalog Operating temperature range (°C) -40 to 85 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.2 Shutdown current (ISD) (typ) (µA) 0.54 Product type Processor and FPGA
DSBGA (YFF) 81 16 mm² 4 x 4
  • Four Audio Digital-to-Analog Converter (DAC) Channels
  • Stereo Capless Headphone Drivers
    • Up to 104-dB DR
    • Power Tune for Performance and Power Consumption Tradeoff
  • Stereo 8 Ω, 1.5 W per Channel Speaker Drivers also with 4-Ω Support Capability
  • Differential Earpiece Driver
  • Stereo Line-Out
  • Two Audio Analog-to-Digital Converter (ADC) Channels
    • 96-dBA SNR
  • Four Audio Inputs:
    • Three Differential Microphone Inputs
    • Stereo Line-In and FM Input
  • Two Vibrator and Haptics Feedback Channels
    • Differential H-bridge Drivers
  • Two Low-Noise Analog Microphone Bias Outputs
  • Two Digital Microphone Bias Outputs
  • Analog Low-Power Loop from Line-in to Headphone and Speaker Outputs
  • Dual Phase-Locked Loops (PLLs) for Flexible Clock Support:
    • 32-kHz Sleep Clock Input for System Low-Power Playback Mode
    • 12-, 19.2-, 26-, and 38.4-MHz System Clock Input
  • Accessory Plug and Unplug Detection, Accessory Button Press Detection
  • Integrated Power Supplies:
    • Negative Charge Pump for Capless Headphone Driver
    • Two Low Dropout Voltage Regulators (LDOs) for High Power Supply Rejection Ration (PSRR)
  • I2C Control
  • Thermal Protection:
    • Host Interrupt
  • Power Supplies:
    • Analog: 2.1 V
    • Digital I/O: 1.8 V
    • Battery: 2.3 V–5.5 V
  • Package 3.8-mm × 3.8-mm 81-Pin WCSP
  • Four Audio Digital-to-Analog Converter (DAC) Channels
  • Stereo Capless Headphone Drivers
    • Up to 104-dB DR
    • Power Tune for Performance and Power Consumption Tradeoff
  • Stereo 8 Ω, 1.5 W per Channel Speaker Drivers also with 4-Ω Support Capability
  • Differential Earpiece Driver
  • Stereo Line-Out
  • Two Audio Analog-to-Digital Converter (ADC) Channels
    • 96-dBA SNR
  • Four Audio Inputs:
    • Three Differential Microphone Inputs
    • Stereo Line-In and FM Input
  • Two Vibrator and Haptics Feedback Channels
    • Differential H-bridge Drivers
  • Two Low-Noise Analog Microphone Bias Outputs
  • Two Digital Microphone Bias Outputs
  • Analog Low-Power Loop from Line-in to Headphone and Speaker Outputs
  • Dual Phase-Locked Loops (PLLs) for Flexible Clock Support:
    • 32-kHz Sleep Clock Input for System Low-Power Playback Mode
    • 12-, 19.2-, 26-, and 38.4-MHz System Clock Input
  • Accessory Plug and Unplug Detection, Accessory Button Press Detection
  • Integrated Power Supplies:
    • Negative Charge Pump for Capless Headphone Driver
    • Two Low Dropout Voltage Regulators (LDOs) for High Power Supply Rejection Ration (PSRR)
  • I2C Control
  • Thermal Protection:
    • Host Interrupt
  • Power Supplies:
    • Analog: 2.1 V
    • Digital I/O: 1.8 V
    • Battery: 2.3 V–5.5 V
  • Package 3.8-mm × 3.8-mm 81-Pin WCSP

The TWL6041 is an audio codec with a high level of integration providing analog audio codec functions for portable applications, as shown in . The device contains multiple audio analog inputs and outputs, as well as microphone biases and accessory detection. The device is connected to the OMAP 4 host processor through a proprietary PDM interface for audio data communication enabling partitioning with optimized power consumption and performance. Multichannel audio data is multiplexed to a single wire for downlink (PDML) and uplink (PDMUL).

The OMAP4 device provides the TWL6041 device with five PDM audio-input channels (DL0–DL4). Channels DL0–DL3 are connected to four parallel DAC channels multiplexed to stereo headphone (HSL, HSR), stereo speaker (HFL, HFR), and earpiece (EAR) or stereo line outputs (AUXL, AUXR).

The stereo headphone path has a low-power (LP) mode operating from a 32-kHz sleep clock to enable more than 100 hours of MP3 playback time. Very-high dynamic range of 104 dBA is achieved when using the system clock input and DAC path high-performance (HP) mode. Class-AB headphone drivers provide a 1-Vrms output and are ground centered for capless connection to a headphone, thus enabling system size and cost reduction. The earpiece driver is a differential class-AB driver with 2-Vrms capability to a typical 32-Ω load or 1.4-Vrms to a typical 16-Ω load.

Stereo speaker path has filterless class-D outputs with 1.5-W capability per channel. Additionally, the 4-Ω load is supported. For output-power maximization, supply connection to an external boost is supported. Speaker drivers also support hearing aid coil loads.

For vibrator and haptic feedback support, the TWL6041 device has two PWM channels with independent input signals from DL4 or I2C. Vibra drivers are differential H-bridge outputs, enabling fast acceleration and deceleration of vibra motor. An external driver for a hearing aid coil or a piezo speaker requiring high voltage can be connected to line outputs.

The TWL6041 supports three differential microphone inputs (MMIC, HMIC, and SMIC) and a stereo line-input (AFML, AFMR) multiplexed to two parallel ADCs. The PDM output from the ADCs is transmitted to the OMAP4 processor through UL0 and UL1. AFML, AFMR inputs can also be looped to analog outputs (LB0, LB1).

Two LDOs provide a voltage of 2.1 V to bias analog microphones (MBIAS and HBIAS). The maximum output current is 2 mA for each analog bias, allowing up to two microphones on one bias. Two LDOs provide a voltage of 1.8 V to 1.85 V to bias digital microphones (DBIAS1 and DBIAS2). One bias generator can bias several digital microphones at the same time, with a total maximum output current of 10 mA.

The TWL6041 device has an integrated negative charge pump and two LDOs (HS LDO and LS LDO) for high PSRR. The only external supply needed is 2.1 V, which is available from the 2.1-V DC-DC of TWL6030/6032 power-management IC (PMIC) in the OMAP4 system. By powering audio from low-noise 2.1-V DC-DC of low power consumption, high dynamic range and high output swing at the headset output are achieved. All other supply inputs can be directly connected to battery or system 1.8-V I/O.

Two integrated PLLs enable operation from a 12-, 19.2-, 26-, and 38.4-MHz system clock (MCLK) or, in LP playback mode, from a 32-kHz sleep clock (CLK32K). The frequency plan is based on a 48-kS/s audio data rate for all channels, and the host processor uses sample-rate converters to interface with different sample rates (for example, 44.1 kHz). In the specific case of low-power audio playback, the TWL6041 supports the 44.1-kS/s and 48-kS/s rates. Transitions between sample rates or input clocks are seamless.

Accessory plug and unplug detections are supported (PLUGDET). Some headsets have a manual switch for submitting send/end signal to the terminal through the microphone input pin. This feature is supported by a periodic accessory button press detection to minimize current consumption in sleep mode. Detection cycle properties can be programmed according to system requirements.

The TWL6041BSRS, when connected to OMAP4 and OMAP5 platform, includes SRS Audio Effects, SRS pre-processing solutions and SRS TruMedia as standard feature for Android ICS.

The TWL6041 is an audio codec with a high level of integration providing analog audio codec functions for portable applications, as shown in . The device contains multiple audio analog inputs and outputs, as well as microphone biases and accessory detection. The device is connected to the OMAP 4 host processor through a proprietary PDM interface for audio data communication enabling partitioning with optimized power consumption and performance. Multichannel audio data is multiplexed to a single wire for downlink (PDML) and uplink (PDMUL).

The OMAP4 device provides the TWL6041 device with five PDM audio-input channels (DL0–DL4). Channels DL0–DL3 are connected to four parallel DAC channels multiplexed to stereo headphone (HSL, HSR), stereo speaker (HFL, HFR), and earpiece (EAR) or stereo line outputs (AUXL, AUXR).

The stereo headphone path has a low-power (LP) mode operating from a 32-kHz sleep clock to enable more than 100 hours of MP3 playback time. Very-high dynamic range of 104 dBA is achieved when using the system clock input and DAC path high-performance (HP) mode. Class-AB headphone drivers provide a 1-Vrms output and are ground centered for capless connection to a headphone, thus enabling system size and cost reduction. The earpiece driver is a differential class-AB driver with 2-Vrms capability to a typical 32-Ω load or 1.4-Vrms to a typical 16-Ω load.

Stereo speaker path has filterless class-D outputs with 1.5-W capability per channel. Additionally, the 4-Ω load is supported. For output-power maximization, supply connection to an external boost is supported. Speaker drivers also support hearing aid coil loads.

For vibrator and haptic feedback support, the TWL6041 device has two PWM channels with independent input signals from DL4 or I2C. Vibra drivers are differential H-bridge outputs, enabling fast acceleration and deceleration of vibra motor. An external driver for a hearing aid coil or a piezo speaker requiring high voltage can be connected to line outputs.

The TWL6041 supports three differential microphone inputs (MMIC, HMIC, and SMIC) and a stereo line-input (AFML, AFMR) multiplexed to two parallel ADCs. The PDM output from the ADCs is transmitted to the OMAP4 processor through UL0 and UL1. AFML, AFMR inputs can also be looped to analog outputs (LB0, LB1).

Two LDOs provide a voltage of 2.1 V to bias analog microphones (MBIAS and HBIAS). The maximum output current is 2 mA for each analog bias, allowing up to two microphones on one bias. Two LDOs provide a voltage of 1.8 V to 1.85 V to bias digital microphones (DBIAS1 and DBIAS2). One bias generator can bias several digital microphones at the same time, with a total maximum output current of 10 mA.

The TWL6041 device has an integrated negative charge pump and two LDOs (HS LDO and LS LDO) for high PSRR. The only external supply needed is 2.1 V, which is available from the 2.1-V DC-DC of TWL6030/6032 power-management IC (PMIC) in the OMAP4 system. By powering audio from low-noise 2.1-V DC-DC of low power consumption, high dynamic range and high output swing at the headset output are achieved. All other supply inputs can be directly connected to battery or system 1.8-V I/O.

Two integrated PLLs enable operation from a 12-, 19.2-, 26-, and 38.4-MHz system clock (MCLK) or, in LP playback mode, from a 32-kHz sleep clock (CLK32K). The frequency plan is based on a 48-kS/s audio data rate for all channels, and the host processor uses sample-rate converters to interface with different sample rates (for example, 44.1 kHz). In the specific case of low-power audio playback, the TWL6041 supports the 44.1-kS/s and 48-kS/s rates. Transitions between sample rates or input clocks are seamless.

Accessory plug and unplug detections are supported (PLUGDET). Some headsets have a manual switch for submitting send/end signal to the terminal through the microphone input pin. This feature is supported by a periodic accessory button press detection to minimize current consumption in sleep mode. Detection cycle properties can be programmed according to system requirements.

The TWL6041BSRS, when connected to OMAP4 and OMAP5 platform, includes SRS Audio Effects, SRS pre-processing solutions and SRS TruMedia as standard feature for Android ICS.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
2개 모두 보기
유형 직함 날짜
* Data sheet TWL6041 8-Channel Low-Power Audio Codec for Portable Applications datasheet (Rev. D) PDF | HTML 2014/08/18
Selection guide Power Management Guide 2018 (Rev. R) 2018/06/25

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

드라이버 또는 라이브러리

TWL6040SW-LINUX — TWL6040용 리눅스 드라이버

 

Linux Mainline Status

Available in Linux Main line: Yes
Available through git.ti.com: N/A

Supported Devices:

  • twl6040
  • twl6041

 

Linux Source Files

The files associated with this device are:

  1. drivers/mfd/twl6040.c
  2. drivers/clk/clk-twl6040.c
  3. drivers/gpio/gpio-twl6040.c
  4. drivers/input/misc/twl6040-vibra.c
  5. (...)
패키지 CAD 기호, 풋프린트 및 3D 모델
DSBGA (YFF) 81 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상