전원 관리 AC/DC 및 DC/DC 컨트롤러(외장 FET)

UC2855B

활성

10.5V/10V UVLO 및 0 전압 전이를 지원하는 양극 CCM PFC 컨트롤러, -40°C~85°C

이 제품의 최신 버전이 있습니다

open-in-new 대안 비교
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
UCC28180 활성 향상된 시동 및 과도 응답을 지원하는 18kHz~250kHz CCM PFC 컨트롤러 Enhanced transient response and startup, fewer pins, wider operating temperature range, lower startup current, audible noise minimization, enhanced dynamic fault response.

제품 상세 정보

Vin (max) (V) 20 Operating temperature range (°C) -40 to 85 Control mode CCM Topology Boost, PFC controller Rating Catalog Features > 750 W applications, > 750W Applications, Average current mode, Continuous Control Mode, Enable, OVP, Overvoltage protection Duty cycle (max) (%) 95
Vin (max) (V) 20 Operating temperature range (°C) -40 to 85 Control mode CCM Topology Boost, PFC controller Rating Catalog Features > 750 W applications, > 750W Applications, Average current mode, Continuous Control Mode, Enable, OVP, Overvoltage protection Duty cycle (max) (%) 95
PDIP (N) 20 228.702 mm² 24.33 x 9.4 SOIC (DW) 20 131.84 mm² 12.8 x 10.3
  • Controls Boost PWM to Near Unity Power Factor
  • Fixed Frequency Average Current Mode Control Minimizes Line Current Distortion
  • Built-in Active Snubber (ZVT) Allows Operation to 500kHz, Improved EMI and Efficiency
  • Inductor Current Synthesizer allows Single Current Transformer Current Sense for Improved Efficiency and Noise Margin
  • Accurate Analog Multiplier with Line Compensator allows for Universal Input Voltage Operation
  • High Bandwidth (5MHz), Low Offset Current Amplifier
  • Overvoltage and Overcurrent protection
  • Two UVLO Threshold Options
  • 150&mirco;A Startup Supply Current Typical
  • Precision 1% 7.5V Reference
  • Controls Boost PWM to Near Unity Power Factor
  • Fixed Frequency Average Current Mode Control Minimizes Line Current Distortion
  • Built-in Active Snubber (ZVT) Allows Operation to 500kHz, Improved EMI and Efficiency
  • Inductor Current Synthesizer allows Single Current Transformer Current Sense for Improved Efficiency and Noise Margin
  • Accurate Analog Multiplier with Line Compensator allows for Universal Input Voltage Operation
  • High Bandwidth (5MHz), Low Offset Current Amplifier
  • Overvoltage and Overcurrent protection
  • Two UVLO Threshold Options
  • 150&mirco;A Startup Supply Current Typical
  • Precision 1% 7.5V Reference

The UC3855A/B provides all the control features necessary for high power, high frequency PFC boost converters. The average current mode control method allows for stable, low distortion AC line current programming without the need for slope compensation. In addition, the UC3855 utilizes an active snubbing or ZVT (Zero Voltage Transition technique) to dramatically reduce diode recovery and MOSFET turn-on losses, resulting in lower EMI emissions and higher efficiency. Boost converter switching frequencies up to 500kHz are now realizable, requiring only an additional small MOSFET, diode, and inductor to resonantly soft switch the boost diode and switch. Average current sensing can be employed using a simple resistive shunt or a current sense transformer. Using the current sense transformer method, the internal current synthesizer circuit buffers the inductor current during the switch on-time, and reconstructs the inductor current during the switch off-time. Improved signal to noise ratio and negligible current sensing losses make this an attractive solution for higher power applications.

The UC3855A/B also features a single quadrant multiplier, squarer, and divider circuit which provides the programming signal for the current loop. The internal multiplier current limit reduces output power during low line conditions. An overvoltage protection circuit disables both controller outputs in the event of a boost output OV condition.

Low startup supply current, UVLO with hysteresis, a 1% 7.5V reference, voltage amplifier with softstart, input supply voltage clamp, enable comparator, and overcurrent comparator complete the list of features. Available packages include: 20 pin N, DW, Q, J, and L.

The UC3855A/B provides all the control features necessary for high power, high frequency PFC boost converters. The average current mode control method allows for stable, low distortion AC line current programming without the need for slope compensation. In addition, the UC3855 utilizes an active snubbing or ZVT (Zero Voltage Transition technique) to dramatically reduce diode recovery and MOSFET turn-on losses, resulting in lower EMI emissions and higher efficiency. Boost converter switching frequencies up to 500kHz are now realizable, requiring only an additional small MOSFET, diode, and inductor to resonantly soft switch the boost diode and switch. Average current sensing can be employed using a simple resistive shunt or a current sense transformer. Using the current sense transformer method, the internal current synthesizer circuit buffers the inductor current during the switch on-time, and reconstructs the inductor current during the switch off-time. Improved signal to noise ratio and negligible current sensing losses make this an attractive solution for higher power applications.

The UC3855A/B also features a single quadrant multiplier, squarer, and divider circuit which provides the programming signal for the current loop. The internal multiplier current limit reduces output power during low line conditions. An overvoltage protection circuit disables both controller outputs in the event of a boost output OV condition.

Low startup supply current, UVLO with hysteresis, a 1% 7.5V reference, voltage amplifier with softstart, input supply voltage clamp, enable comparator, and overcurrent comparator complete the list of features. Available packages include: 20 pin N, DW, Q, J, and L.

다운로드

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet High Performance Power Factor Preregulator datasheet (Rev. B) 2005/10/27

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​