TLC27L7

ACTIVE

Dual Precision Single Supply uPower Operational Amplifier

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TLV9102 ACTIVE Dual, 16-V, 1.1-MHz, low-power operational amplifier Lower offset voltage (1.5 mV), lower power (0.12 mA), lower noise (30 nV/√Hz), wider temp range (-40 to 125)

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Vos (offset voltage at 25°C) (max) (mV) 0.5 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Rail-to-rail In to V- Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 CMRR (typ) (dB) 94 Rating Catalog Operating temperature range (°C) -40 to 85 Iout (typ) (A) 0.01 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0 Output swing headroom (to positive supply) (typ) (V) -0.9
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Vos (offset voltage at 25°C) (max) (mV) 0.5 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Rail-to-rail In to V- Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 CMRR (typ) (dB) 94 Rating Catalog Operating temperature range (°C) -40 to 85 Iout (typ) (A) 0.01 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0 Output swing headroom (to positive supply) (typ) (V) -0.9
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6 SOP (PS) 8 48.36 mm² 6.2 x 7.8
  • Trimmed Offset Voltage: TLC27L7...500 µV Max at 25°C, VDD = 5 V
  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:>
      0°C to 70°C...3 V to 16 V
      -40°C to 85°C...4 V to 16 V
      -55°C to 125°C...4 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix Types)
  • Ultra-Low Power...Typically 95 µW at 25°C, VDD = 5 V
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance...1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up immunity

LinCMOS is a trademark of Texas Instruments.

  • Trimmed Offset Voltage: TLC27L7...500 µV Max at 25°C, VDD = 5 V
  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:>
      0°C to 70°C...3 V to 16 V
      -40°C to 85°C...4 V to 16 V
      -55°C to 125°C...4 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix Types)
  • Ultra-Low Power...Typically 95 µW at 25°C, VDD = 5 V
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance...1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up immunity

LinCMOS is a trademark of Texas Instruments.

The TLC27L2 and TLC27L7 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, extremely low power, and high gain.

These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and low power consumption make these cost-effective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7 (500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-Suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

The TLC27L2 and TLC27L7 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, extremely low power, and high gain.

These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and low power consumption make these cost-effective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7 (500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-Suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Errata Errata for TLC27L2/2A/2B/L7 Data Sheet SLOS052D: Error in Figure 44 18 Mar 2011
* Data sheet LinCMOS Precision Dual Operational Amplifiers datasheet (Rev. D) 25 Oct 2005

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​