Startseite Schnittstelle CAN transceivers

SN55HVD251

AKTIV

Industrieller CAN-Transceiver

Produktdetails

Protocols CAN Number of channels 1 Supply voltage (V) 4.5 to 5.5 Bus fault voltage (V) -36 to 36 Signaling rate (max) (bps) 1000000 Rating Catalog
Protocols CAN Number of channels 1 Supply voltage (V) 4.5 to 5.5 Bus fault voltage (V) -36 to 36 Signaling rate (max) (bps) 1000000 Rating Catalog
WSON (DRJ) 8 16 mm² 4 x 4
  • Drop-In Improved Replacement for the
    PCA82C250 and PCA82C251
  • Bus-Fault Protection of ±36 V
  • Meets or Exceeds ISO 11898
  • Signaling Rates(1) up to 1 Mbps
  • High Input Impedance Allows up to 120 Nodes
    on a Bus
  • Bus Pin ESD Protection Exceeds 14 kV HBM
  • Unpowered Node Does Not Disturb the Bus
  • Low-Current Standby Mode: 200-µA Typical
  • Thermal Shutdown Protection
  • Glitch-Free Power-Up and Power-Down CAN Bus
    Protection for Hot-Plugging
  • DeviceNet Vendor ID #806
  • APPLICATIONS
    • CAN Data Buses
    • Industrial Automation
    • SAE J1939 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second).
All other trademarks are the property of their respective owners

  • Drop-In Improved Replacement for the
    PCA82C250 and PCA82C251
  • Bus-Fault Protection of ±36 V
  • Meets or Exceeds ISO 11898
  • Signaling Rates(1) up to 1 Mbps
  • High Input Impedance Allows up to 120 Nodes
    on a Bus
  • Bus Pin ESD Protection Exceeds 14 kV HBM
  • Unpowered Node Does Not Disturb the Bus
  • Low-Current Standby Mode: 200-µA Typical
  • Thermal Shutdown Protection
  • Glitch-Free Power-Up and Power-Down CAN Bus
    Protection for Hot-Plugging
  • DeviceNet Vendor ID #806
  • APPLICATIONS
    • CAN Data Buses
    • Industrial Automation
    • SAE J1939 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second).
All other trademarks are the property of their respective owners

The HVD251 is intended for use in applications employing the Controller Area Network (CAN) serial communication physical layer in accordance with the ISO 11898 Standard. The HVD251 provides differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 megabits per second (Mbps).

Designed for operation in harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V. Also featured are overtemperature protection as well as –7-V to 12-V common-mode range, and tolerance to transients of ±200 V. The transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

Rs, pin 8, selects one of three different modes of operation: high-speed, slope control, or low-power mode. The high-speed mode of operation is selected by connecting pin 8 to ground, allowing the transmitter output transistors to switch as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8; the slope is proportional to the pin’s output current. Slope control with an external resistor value of 10 kΩ gives about 15-V / µs slew rate; 100 kΩ gives about 2-V/µs slew rate.

If a high logic level is applied to the Rs pin 8, the device enters a low-current standby mode where the driver is switched off and the receiver remains active. The local protocol controller returns the device to the normal mode when it transmits to the bus.

The HVD251 is intended for use in applications employing the Controller Area Network (CAN) serial communication physical layer in accordance with the ISO 11898 Standard. The HVD251 provides differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 megabits per second (Mbps).

Designed for operation in harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V. Also featured are overtemperature protection as well as –7-V to 12-V common-mode range, and tolerance to transients of ±200 V. The transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

Rs, pin 8, selects one of three different modes of operation: high-speed, slope control, or low-power mode. The high-speed mode of operation is selected by connecting pin 8 to ground, allowing the transmitter output transistors to switch as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8; the slope is proportional to the pin’s output current. Slope control with an external resistor value of 10 kΩ gives about 15-V / µs slew rate; 100 kΩ gives about 2-V/µs slew rate.

If a high logic level is applied to the Rs pin 8, the device enters a low-current standby mode where the driver is switched off and the receiver remains active. The local protocol controller returns the device to the normal mode when it transmits to the bus.

Herunterladen

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 1
Typ Titel Datum
* Data sheet SNx5HVD251 Industrial CAN Bus Transceiver datasheet (Rev. G) PDF | HTML 12 Okt 2015

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​