Startseite Schnittstelle Andere Schnittstellen

TSB82AA2B

AKTIV

1394b OHCI-Lynx ™-Controller

Produktdetails

Protocols Catalog Device type Link-layer controller Rating Catalog Operating temperature range (°C) -40 to 85
Protocols Catalog Device type Link-layer controller Rating Catalog Operating temperature range (°C) -40 to 85
LQFP (PGE) 144 484 mm² 22 x 22
  • Single 3.3-V supply (1.8-V internal core voltage with regulator)
  • 3.3-V and 5-V PCI signaling environments
  • Serial bus data rates of 100M bits/s, 200M bits/s, 400M bits/s, and 800M bits/s
  • Physical write posting of up to three outstanding transactions
  • Serial ROM or boot ROM interface supports 2-wire serial EEPROM devices
  • 33-MHz/64-bit and 33-MHz/32-bit selectable PCI interface
  • Multifunction terminal (MFUNC terminal 1)
    • PCI_CLKRUN protocol per the PCI Mobile Design Guide
    • General-purpose I/O
    • CYCLEIN/CYCLEOUT for external cycle timer control for customized synchronization
  • PCI burst transfers and deep FIFOs to tolerate large host latency
    • Transmit FIFO—5K asynchronous
    • Transmit FIFO—2K isochronous
    • Receive FIFO—2K asynchronous
    • Receive FIFO—2K isochronous
  • D0, D1, D2, and D3 power states and PME events per the PCI Bus Power Management Interface Specification
  • Programmable asynchronous transmit threshold
  • Isochronous receive dual-buffer mode
  • Out-of-order pipelining for asynchronous transmit requests
  • Register access fail interrupt when the PHY SYSCLK is not active
  • Initial bandwidth available and initial channels available registers
  • Digital video and audio performance enhancements
  • Fabricated in advanced low-power CMOS process
  • Packaged in 144-terminal LQFP (PGE) or 176-ball MicroStar BGA. (GGW package)

MicroStar BGA and OHCI-Lynx are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

  • Single 3.3-V supply (1.8-V internal core voltage with regulator)
  • 3.3-V and 5-V PCI signaling environments
  • Serial bus data rates of 100M bits/s, 200M bits/s, 400M bits/s, and 800M bits/s
  • Physical write posting of up to three outstanding transactions
  • Serial ROM or boot ROM interface supports 2-wire serial EEPROM devices
  • 33-MHz/64-bit and 33-MHz/32-bit selectable PCI interface
  • Multifunction terminal (MFUNC terminal 1)
    • PCI_CLKRUN protocol per the PCI Mobile Design Guide
    • General-purpose I/O
    • CYCLEIN/CYCLEOUT for external cycle timer control for customized synchronization
  • PCI burst transfers and deep FIFOs to tolerate large host latency
    • Transmit FIFO—5K asynchronous
    • Transmit FIFO—2K isochronous
    • Receive FIFO—2K asynchronous
    • Receive FIFO—2K isochronous
  • D0, D1, D2, and D3 power states and PME events per the PCI Bus Power Management Interface Specification
  • Programmable asynchronous transmit threshold
  • Isochronous receive dual-buffer mode
  • Out-of-order pipelining for asynchronous transmit requests
  • Register access fail interrupt when the PHY SYSCLK is not active
  • Initial bandwidth available and initial channels available registers
  • Digital video and audio performance enhancements
  • Fabricated in advanced low-power CMOS process
  • Packaged in 144-terminal LQFP (PGE) or 176-ball MicroStar BGA. (GGW package)

MicroStar BGA and OHCI-Lynx are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

The TSB82AA2B OHCI-Lynx. controller is a discrete 1394b link-layer device, which has been designed to meet the demanding requirements of today's 1394 bus designs. The TSB82AA2B device is capable of exceptional 800M bits/s performance; thus, providing the throughput and bandwidth to move data efficiently and quickly between the PCI and 1394 buses. The TSB82AA2B device also provides outstanding ultra-low power operation and intelligent power management capabilities. The device provides the IEEE 1394 link function and is compatible with 100M bits/s, 200M bits/s, 400M bits/s, and 800M bits/s serial bus data rates.

The TSB82AA2B improved throughput and increased bandwidth make it ideal for today's high-end PCs and open the door for the development of S800 RAID- and SAN-based peripherals.

The TSB82AA2B OHCI-Lynx controller operates as the interface between a 33-MHz/64-bit or 33-MHz/32-bit PCI local bus and a compatible 1394b PHY-layer device (such as the TSB81BA3 device) that is capable of supporting serial data rates at 98.304M, 196.608M, 393.216M, or 786.432M bits/s (referred to as S100, S200, S400, or S800 speeds, respectively). When acting as a PCI bus master, the TSB82AA2B device is capable of multiple cacheline bursts of data, which can transfer at 264M bytes/s for 64-bit transfers or 132M bytes/s for 32-bit transfers after connecting to the memory controller.

Due to the high throughput potential of the TSB82AA2B device, it possible to encounter large PCI and legacy 1394 bus latencies, which can cause the 1394 data to be overrun. To overcome this potential problem, the TSB82AA2B implements deep transmit and receive FIFOs (see Section 1.2, Features, for FIFO size information) to buffer the 1394 data, thus preventing possible problems due to bus latency. This also ensures that the device can transmit and receive sustained maximum size isochronous or asynchronous data payloads at S800.

The TSB82AA2B device implements other performance enhancements to improve overall performance of the device, such as: a highly tuned physical data path for enhanced SBP-2 performance, physical post writing buffers, multiple isochronous contexts, and advanced internal arbitration.

The TSB82AA2B device also implements hardware enhancements to better support digital video (DV) and MPEG data stream reception and transmission. These enhancements are enabled through the isochronous receive digital video enhancements register at TI extension offset A80h (see Section 5.4, Isochronous Receive Digital Video Enhancements Register). These enhancements include automatic time stamp insertion for transmitted DV and MPEG-formatted streams and common isochronous packet (CIP) header stripping for received DV streams.

The CIP format is defined by the IEC 61883-1:1998 specification. The enhancements to the isochronous data contexts are implemented as hardware support for the synchronization timestamp for both DV and audio/video CIP formats. The TSB82AA2B device supports modification of the synchronization timestamp field to ensure that the value inserted via software is not stale-that is, less than the current cycle timer when the packet is transmitted.

The TSB82AA2B performance and enhanced throughput make it an excellent choice for today's 1394 PC market; however, the portable, mobile, and even today's desktop PCs power management schemes continue to require devices to use less and less power, and the TI 1394 OHCI-Lynx product line has continued to raise the bar by providing the lowest power 1394 link-layers in the industry. The TSB82AA2B device represents the next evolution of TI commitment to meet the challenge of power-sensitive applications. The TSB82AA2B device has ultra-low operational power requirements and intelligent power management capabilities that allow it to autonomously conserve power based on the device usage.

One of the key elements for reducing the TSB82AA2B operational power requirements is the TI advanced CMOS process and the implementation of an internal 1.8-V core, which is supplied by an improved integrated 3.3-V to 1.8-V voltage regulator. The TSB82AA2B device implements a next-generation voltage regulator that is more efficient than its predecessors, thus providing an overall reduction in the device operational power requirements especially when operating in D3cold using auxiliary power. In fact, the TSB82AA2B device fully supports D0, D1, D2, and D3hot/cold power states as specified in the PC 2001 Design Guide requirements and the PCI Power Management Specification. PME wake event support is subject to operating system support and implementation.

As required by the 1394 Open Host Controller Interface Specification (OHCI) and IEEE Std 1394a-2000, internal control registers are memory mapped and nonprefetchable. The PCI configuration header is accessed through configuration cycles as specified by the PCI Local Bus Specification, and provides plug-and-play (PnP) compatibility. Furthermore, the TSB82AA2B device is fully compliant with the latest PCI Local Bus Specification, PCI Bus Power Management Interface Specification, IEEE Draft Std 1394b, IEEE Std 1394a-2000, and 1394 Open Host Controller Interface Specification (see Section 1.3, Related Documents, for a complete list).

The TSB82AA2B OHCI-Lynx. controller is a discrete 1394b link-layer device, which has been designed to meet the demanding requirements of today's 1394 bus designs. The TSB82AA2B device is capable of exceptional 800M bits/s performance; thus, providing the throughput and bandwidth to move data efficiently and quickly between the PCI and 1394 buses. The TSB82AA2B device also provides outstanding ultra-low power operation and intelligent power management capabilities. The device provides the IEEE 1394 link function and is compatible with 100M bits/s, 200M bits/s, 400M bits/s, and 800M bits/s serial bus data rates.

The TSB82AA2B improved throughput and increased bandwidth make it ideal for today's high-end PCs and open the door for the development of S800 RAID- and SAN-based peripherals.

The TSB82AA2B OHCI-Lynx controller operates as the interface between a 33-MHz/64-bit or 33-MHz/32-bit PCI local bus and a compatible 1394b PHY-layer device (such as the TSB81BA3 device) that is capable of supporting serial data rates at 98.304M, 196.608M, 393.216M, or 786.432M bits/s (referred to as S100, S200, S400, or S800 speeds, respectively). When acting as a PCI bus master, the TSB82AA2B device is capable of multiple cacheline bursts of data, which can transfer at 264M bytes/s for 64-bit transfers or 132M bytes/s for 32-bit transfers after connecting to the memory controller.

Due to the high throughput potential of the TSB82AA2B device, it possible to encounter large PCI and legacy 1394 bus latencies, which can cause the 1394 data to be overrun. To overcome this potential problem, the TSB82AA2B implements deep transmit and receive FIFOs (see Section 1.2, Features, for FIFO size information) to buffer the 1394 data, thus preventing possible problems due to bus latency. This also ensures that the device can transmit and receive sustained maximum size isochronous or asynchronous data payloads at S800.

The TSB82AA2B device implements other performance enhancements to improve overall performance of the device, such as: a highly tuned physical data path for enhanced SBP-2 performance, physical post writing buffers, multiple isochronous contexts, and advanced internal arbitration.

The TSB82AA2B device also implements hardware enhancements to better support digital video (DV) and MPEG data stream reception and transmission. These enhancements are enabled through the isochronous receive digital video enhancements register at TI extension offset A80h (see Section 5.4, Isochronous Receive Digital Video Enhancements Register). These enhancements include automatic time stamp insertion for transmitted DV and MPEG-formatted streams and common isochronous packet (CIP) header stripping for received DV streams.

The CIP format is defined by the IEC 61883-1:1998 specification. The enhancements to the isochronous data contexts are implemented as hardware support for the synchronization timestamp for both DV and audio/video CIP formats. The TSB82AA2B device supports modification of the synchronization timestamp field to ensure that the value inserted via software is not stale-that is, less than the current cycle timer when the packet is transmitted.

The TSB82AA2B performance and enhanced throughput make it an excellent choice for today's 1394 PC market; however, the portable, mobile, and even today's desktop PCs power management schemes continue to require devices to use less and less power, and the TI 1394 OHCI-Lynx product line has continued to raise the bar by providing the lowest power 1394 link-layers in the industry. The TSB82AA2B device represents the next evolution of TI commitment to meet the challenge of power-sensitive applications. The TSB82AA2B device has ultra-low operational power requirements and intelligent power management capabilities that allow it to autonomously conserve power based on the device usage.

One of the key elements for reducing the TSB82AA2B operational power requirements is the TI advanced CMOS process and the implementation of an internal 1.8-V core, which is supplied by an improved integrated 3.3-V to 1.8-V voltage regulator. The TSB82AA2B device implements a next-generation voltage regulator that is more efficient than its predecessors, thus providing an overall reduction in the device operational power requirements especially when operating in D3cold using auxiliary power. In fact, the TSB82AA2B device fully supports D0, D1, D2, and D3hot/cold power states as specified in the PC 2001 Design Guide requirements and the PCI Power Management Specification. PME wake event support is subject to operating system support and implementation.

As required by the 1394 Open Host Controller Interface Specification (OHCI) and IEEE Std 1394a-2000, internal control registers are memory mapped and nonprefetchable. The PCI configuration header is accessed through configuration cycles as specified by the PCI Local Bus Specification, and provides plug-and-play (PnP) compatibility. Furthermore, the TSB82AA2B device is fully compliant with the latest PCI Local Bus Specification, PCI Bus Power Management Interface Specification, IEEE Draft Std 1394b, IEEE Std 1394a-2000, and 1394 Open Host Controller Interface Specification (see Section 1.3, Related Documents, for a complete list).

Herunterladen Video mit Transkript ansehen Video

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 1
Typ Titel Datum
* Data sheet 1394b OHCI-Lynx Controller. datasheet (Rev. A) 20 Okt 2011

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Simulationstool

PSPICE-FOR-TI — PSpice® für TI Design-und Simulationstool

PSpice® für TI ist eine Design- und Simulationsumgebung, welche Sie dabei unterstützt, die Funktionalität analoger Schaltungen zu evaluieren. Diese voll ausgestattete Design- und Simulationssuite verwendet eine analoge Analyse-Engine von Cadence®. PSpice für TI ist kostenlos erhältlich und (...)
Simulationstool

TINA-TI — SPICE-basiertes analoges Simulationsprogramm

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Benutzerhandbuch: PDF
Gehäuse Pins CAD-Symbole, Footprints und 3D-Modelle
LQFP (PGE) 144 Ultra Librarian

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos