SN65HVD230
- Operates with a single 3.3 V Supply
- Compatible With ISO 11898-2 Standard
- Low Power Replacement for the PCA82C250 Footprint
- Bus Pin ESD Protection Exceeds ±16 kV HBM
- High Input Impedance Allows for Up to 120 Nodes on a Bus
- Adjustable Driver Transition Times for Improved Emissions Performance
- SN65HVD230 and SN65HVD231
- SN65HVD230: Low Current Standby Mode
- 370 µA Typical
- SN65HVD231: Ultra Low Current Sleep Mode
- 40 nA Typical
- Designed for Data Rates(1) up to 1 Mbps
- Thermal Shutdown Protection
- Open Circuit Fail-Safe Design
- Glitch Free Power Up and Power Down Protection for Hot Plugging Applications (1)
(1)The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).
The SN65HVD230, SN65HVD231, and SN65HVD232 controller area network (CAN) transceivers are compatible to the specifications of the ISO 11898-2 High Speed CAN Physical Layer standard (transceiver). These devices are designed for data rates up to 1 megabit per second (Mbps), and include many protection features providing device and CAN network robustness. The SN65HVD23x transceivers are designed for use with the Texas Instruments 3.3 V µPs, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.
Designed for operation in especially harsh environments, these devices feature cross wire protection, loss of ground and overvoltage protection, overtemperature protection, as well as wide common mode range of operation.
The CAN transceiver is the CAN physical layer and interfaces the single ended host CAN protocol controller with the differential CAN bus found in industrial, building automation, and automotive applications. These devices operate over a -2 V to 7 V common mode range on the bus, and can withstand common mode transients of ±25 V.
The RS pin (pin 8) on the SN65HVD230 and SN65HVD231 provides three different modes of operation: high speed mode, slope control mode, and low-power mode. The high speed mode of operation is selected by connecting the RS pin to ground, allowing the transmitter output transistors to switch on and off as fast as possible with no limitation on the rise and fall slopes. The rise and fall slopes can also be adjusted by connecting a resistor in series between the RS pin and ground. The slope will be proportional to the pins output current. With a resistor value of 10 kΩ the device will have a slew rate of ~15 V/µs, and with a resistor value of 100 kΩ the device will have a slew rate of ~2 V/µs. See Application Information for more information.
The SN65HVD230 enters a low current standby mode (listen only) during which the driver is switched off and the receiver remains active if a high logic level is applied to the RS pin. This mode provides a lower power consumption mode than normal mode while still allowing the CAN controller to monitor the bus for activity indicating it should return the transceiver to normal mode or slope control mode. The host controller (MCU, DSP) returns the device to a transmitting mode (high speed or slope control) when it wants to transmit a message to the bus or if during standby mode it received bus traffic indicating the need to once again be ready to transmit.
The difference between the SN65HVD230 and the SN65HVD231 is that both the driver and the receiver are switched off in the SN65HVD231 when a high logic level is applied to the RS pin. In this sleep mode the device will not be able to transmit messages to the bus or receive messages from the bus. The device will remain in sleep mode until it is reactivated by applying a low logic level on the RS pin.
관심 가지실만한 유사 제품
비교 대상 장치와 동일한 기능을 지원하는 핀 대 핀
다른 핀 출력을 지원하지만 비교 대상 장치와 동일한 기능
기술 자료
유형 | 직함 | 날짜 | ||
---|---|---|---|---|
* | Data sheet | SN65HVD23x 3.3-V CAN Bus Transceivers datasheet (Rev. O) | PDF | HTML | 2018/04/04 |
Application note | CAN and LIN transceiver low-power modes | 2019/02/25 | ||
Application note | A System Evaluation of CAN Transceivers (Rev. A) | 2018/07/05 | ||
Application note | Overview of 3.3V CAN (Controller Area Network) Transceivers | 2013/01/22 | ||
Application note | Using CAN Arbitration for Electrical Layer Testing | 2003/01/13 |
설계 및 개발
추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.
TCAN-SOIC8-EVM — 8핀 SOIC 또는 SOT 패키지의 CAN 트랜시버용 범용 평가 모듈
TCAN-SOIC8-EVM은 사용자가 텍사스 인스트루먼트 8핀 CAN 트랜시버 장치를 평가할 수 있는 옵션을 제공하도록 개발되었습니다. 보드는 구성 요소 풋프린트 및 점퍼 옵션을 통해 평가 유연성을 제공합니다.
SN65HVD230 IBIS Model With 20V/us Slew Rate Control (Rev. C)
SN65HVD230 IBIS Model With 2V/us Slew Rate Control (Rev. C)
PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®
TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램
패키지 | 핀 | CAD 기호, 풋프린트 및 3D 모델 |
---|---|---|
SOIC (D) | 8 | Ultra Librarian |
주문 및 품질
- RoHS
- REACH
- 디바이스 마킹
- 납 마감/볼 재질
- MSL 등급/피크 리플로우
- MTBF/FIT 예측
- 물질 성분
- 인증 요약
- 지속적인 신뢰성 모니터링
- 팹 위치
- 조립 위치
권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.