SN65HVD230
- Operates with a single 3.3 V Supply
- Compatible With ISO 11898-2 Standard
- Low Power Replacement for the PCA82C250 Footprint
- Bus Pin ESD Protection Exceeds ±16 kV HBM
- High Input Impedance Allows for Up to 120 Nodes on a Bus
- Adjustable Driver Transition Times for Improved Emissions Performance
- SN65HVD230 and SN65HVD231
- SN65HVD230: Low Current Standby Mode
- 370 µA Typical
- SN65HVD231: Ultra Low Current Sleep Mode
- 40 nA Typical
- Designed for Data Rates(1) up to 1 Mbps
- Thermal Shutdown Protection
- Open Circuit Fail-Safe Design
- Glitch Free Power Up and Power Down Protection for Hot Plugging Applications (1)
(1)The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).
The SN65HVD230, SN65HVD231, and SN65HVD232 controller area network (CAN) transceivers are compatible to the specifications of the ISO 11898-2 High Speed CAN Physical Layer standard (transceiver). These devices are designed for data rates up to 1 megabit per second (Mbps), and include many protection features providing device and CAN network robustness. The SN65HVD23x transceivers are designed for use with the Texas Instruments 3.3 V µPs, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.
Designed for operation in especially harsh environments, these devices feature cross wire protection, loss of ground and overvoltage protection, overtemperature protection, as well as wide common mode range of operation.
The CAN transceiver is the CAN physical layer and interfaces the single ended host CAN protocol controller with the differential CAN bus found in industrial, building automation, and automotive applications. These devices operate over a -2 V to 7 V common mode range on the bus, and can withstand common mode transients of ±25 V.
The RS pin (pin 8) on the SN65HVD230 and SN65HVD231 provides three different modes of operation: high speed mode, slope control mode, and low-power mode. The high speed mode of operation is selected by connecting the RS pin to ground, allowing the transmitter output transistors to switch on and off as fast as possible with no limitation on the rise and fall slopes. The rise and fall slopes can also be adjusted by connecting a resistor in series between the RS pin and ground. The slope will be proportional to the pins output current. With a resistor value of 10 kΩ the device will have a slew rate of ~15 V/µs, and with a resistor value of 100 kΩ the device will have a slew rate of ~2 V/µs. See Application Information for more information.
The SN65HVD230 enters a low current standby mode (listen only) during which the driver is switched off and the receiver remains active if a high logic level is applied to the RS pin. This mode provides a lower power consumption mode than normal mode while still allowing the CAN controller to monitor the bus for activity indicating it should return the transceiver to normal mode or slope control mode. The host controller (MCU, DSP) returns the device to a transmitting mode (high speed or slope control) when it wants to transmit a message to the bus or if during standby mode it received bus traffic indicating the need to once again be ready to transmit.
The difference between the SN65HVD230 and the SN65HVD231 is that both the driver and the receiver are switched off in the SN65HVD231 when a high logic level is applied to the RS pin. In this sleep mode the device will not be able to transmit messages to the bus or receive messages from the bus. The device will remain in sleep mode until it is reactivated by applying a low logic level on the RS pin.
您可能會感興趣的類似產品
引腳對引腳且具備與所比較裝置相同的功能
功能相同,但引腳輸出與所比較的裝置不同
技術文件
類型 | 標題 | 日期 | ||
---|---|---|---|---|
* | Data sheet | SN65HVD23x 3.3-V CAN Bus Transceivers datasheet (Rev. O) | PDF | HTML | 2018年 4月 4日 |
Application note | CAN and LIN transceiver low-power modes | 2019年 2月 25日 | ||
Application note | A System Evaluation of CAN Transceivers (Rev. A) | 2018年 7月 5日 | ||
Application note | Overview of 3.3V CAN (Controller Area Network) Transceivers | 2013年 1月 22日 | ||
Application note | Using CAN Arbitration for Electrical Layer Testing | 2003年 1月 13日 |
設計與開發
如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。
TCAN-SOIC8-EVM — 採用 8 針腳 SOIC 或 SOT 封裝且適用於 CAN 收發器的通用評估模組
TCAN-SOIC8-EVM 的開發用途,在於為使用者提供評估所有德州儀器 8 針腳 CAN 收發器裝置的選項。電路板透過元件尺寸和跨接器選項提供評估彈性。
PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具
TINA-TI — 基於 SPICE 的類比模擬程式
封裝 | 針腳 | CAD 符號、佔位空間與 3D 模型 |
---|---|---|
SOIC (D) | 8 | Ultra Librarian |
訂購與品質
- RoHS
- REACH
- 產品標記
- 鉛塗層/球物料
- MSL 等級/回焊峰值
- MTBF/FIT 估算值
- 材料內容
- 認證摘要
- 進行中持續性的可靠性監測
- 晶圓廠位置
- 組裝地點
建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。