SN65LVDS109

現行

雙路 4 埠 LVDS 中繼器

alarm通知 立即訂購

產品詳細資料

Function Driver, Repeater Protocols LVDS Number of transmitters 8 Number of receivers 2 Supply voltage (V) 3.3 Signaling rate (Mbps) 400 Input signal LVDS Output signal BTL, CTT, GTL, HSTL, LVCMOS, LVDS, LVPECL, LVTTL, PECL, SSTL Rating Catalog Operating temperature range (°C) -40 to 85
Function Driver, Repeater Protocols LVDS Number of transmitters 8 Number of receivers 2 Supply voltage (V) 3.3 Signaling rate (Mbps) 400 Input signal LVDS Output signal BTL, CTT, GTL, HSTL, LVCMOS, LVDS, LVPECL, LVTTL, PECL, SSTL Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DBT) 38 62.08 mm² 9.7 x 6.4
  • Two Line Receivers and Eight ('109) or Sixteen ('117) Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
  • Typical Data Signaling Rates to 400 Mbps or Clock Frequencies to 400 MHz
  • Outputs Arranged in Pairs From Each Bank
  • Enabling Logic Allows Individual Control of Each Driver Output Pair, Plus All Outputs
  • Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100-Ω Load
  • Electrically Compatible With LVDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External Termination Networks
  • Propagation Delay Times < 4.5 ns
  • Output Skew Less Than 550 ps Bank Skew Less Than150 ps Part-to-Part Skew Less Than 1.5 ns
  • Total Power Dissipation Typically <500 mW With All Ports Enabled and at 200 MHz
  • Driver Outputs or Receiver Input Equals High Impedance When Disabled or With VCC < 1.5 V
  • Bus-Pin ESD Protection Exceeds 12 kV
  • Packaged in Thin Shrink Small-Outline Package With 20-Mil Terminal Pitch

  • Two Line Receivers and Eight ('109) or Sixteen ('117) Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
  • Typical Data Signaling Rates to 400 Mbps or Clock Frequencies to 400 MHz
  • Outputs Arranged in Pairs From Each Bank
  • Enabling Logic Allows Individual Control of Each Driver Output Pair, Plus All Outputs
  • Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100-Ω Load
  • Electrically Compatible With LVDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External Termination Networks
  • Propagation Delay Times < 4.5 ns
  • Output Skew Less Than 550 ps Bank Skew Less Than150 ps Part-to-Part Skew Less Than 1.5 ns
  • Total Power Dissipation Typically <500 mW With All Ports Enabled and at 200 MHz
  • Driver Outputs or Receiver Input Equals High Impedance When Disabled or With VCC < 1.5 V
  • Bus-Pin ESD Protection Exceeds 12 kV
  • Packaged in Thin Shrink Small-Outline Package With 20-Mil Terminal Pitch

The SN65LVDS109 and SN65LVDS117 are configured as two identical banks, each bank having one differential line receiver connected to either four ('109) or eight ('117) differential line drivers. The outputs are arranged in pairs having one output from each of the two banks. Individual output enables are provided for each pair of outputs and an additional enable is provided for all outputs.

The line receivers and line drivers implement the electrical characteristics of low-voltage differential signaling (LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers low power, low noise emission, high noise immunity, and high switching speeds. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)

The intended application of these devices, and the LVDS signaling technique, is for point-to-point or point-to-multipoint (distributed simplex) baseband data transmission on controlled impedance media of approximately 100 Ω. The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same silicon substrate, along with the low pulse skew of balanced signaling, provides extremely precise timing alignment of the signals being repeated from the inputs. This is particularly advantageous for implementing system clock and data distribution trees.

The SN65LVDS109 and SN65LVDS117 are characterized for operation from –40°C to 85°C.

The SN65LVDS109 and SN65LVDS117 are configured as two identical banks, each bank having one differential line receiver connected to either four ('109) or eight ('117) differential line drivers. The outputs are arranged in pairs having one output from each of the two banks. Individual output enables are provided for each pair of outputs and an additional enable is provided for all outputs.

The line receivers and line drivers implement the electrical characteristics of low-voltage differential signaling (LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers low power, low noise emission, high noise immunity, and high switching speeds. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)

The intended application of these devices, and the LVDS signaling technique, is for point-to-point or point-to-multipoint (distributed simplex) baseband data transmission on controlled impedance media of approximately 100 Ω. The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same silicon substrate, along with the low pulse skew of balanced signaling, provides extremely precise timing alignment of the signals being repeated from the inputs. This is particularly advantageous for implementing system clock and data distribution trees.

The SN65LVDS109 and SN65LVDS117 are characterized for operation from –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet Dual 4-Port and Dual 8-Port LVDS Repeaters datasheet (Rev. F) 2005年 2月 2日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

SN65LVDS109 IBIS Model

SLLC095.ZIP (4 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 針腳 CAD 符號、佔位空間與 3D 模型
TSSOP (DBT) 38 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片