SN65MLVD040

現行

4 通道半雙工 M-LVDS 線路收發器

產品詳細資料

Function Transceiver Protocols M-LVDS Number of transmitters 4 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (Mbps) 250 Input signal LVTTL, M-LVDS Output signal LVTTL, M-LVDS Rating Catalog Operating temperature range (°C) -40 to 85
Function Transceiver Protocols M-LVDS Number of transmitters 4 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (Mbps) 250 Input signal LVTTL, M-LVDS Output signal LVTTL, M-LVDS Rating Catalog Operating temperature range (°C) -40 to 85
VQFN (RGZ) 48 49 mm² 7 x 7
  • Low-Voltage Differential 30Ω to 55Ω Line Drivers and Receivers for Signaling Rates(1) Up to 250Mbps; Clock Frequencies Up to 125MHz
  • Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
  • Controlled Driver Output Voltage Transition Times for Improved Signal Quality
  • –1V to 3.4V Common-Mode Voltage Range Allows Data Transfer With 2V of Ground Noise
  • Bus Pins High Impedance When Driver Disabled or VCC ≤ 1.5V
  • Independent Enables for each Driver and Receiver
  • Enhanced ESD Protection: 7kV HBM on all Pins
  • 48 pin 7 X 7 QFN (RGZ)
  • M-LVDS Bus Power Up/Down Glitch Free
  • Low-Voltage Differential 30Ω to 55Ω Line Drivers and Receivers for Signaling Rates(1) Up to 250Mbps; Clock Frequencies Up to 125MHz
  • Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
  • Controlled Driver Output Voltage Transition Times for Improved Signal Quality
  • –1V to 3.4V Common-Mode Voltage Range Allows Data Transfer With 2V of Ground Noise
  • Bus Pins High Impedance When Driver Disabled or VCC ≤ 1.5V
  • Independent Enables for each Driver and Receiver
  • Enhanced ESD Protection: 7kV HBM on all Pins
  • 48 pin 7 X 7 QFN (RGZ)
  • M-LVDS Bus Power Up/Down Glitch Free

The SN65MLVD040 provides four half-duplex transceivers for transmitting and receiving Multipoint-Low-Voltage Differential Signals in full compliance with the TIA/EIA-899 (M-LVDS) standard, which are optimized to operate at signaling rates up to 250Mbps. The driver outputs have been designed to support multipoint buses presenting loads as low as 30Ω and incorporates controlled transition times to allow for stubs off of the backplane transmission line.

The M-LVDS standard defines two types of receivers, designated as Type-1 and Type-2. Type-1 receivers have thresholds centered about zero with 25mV of hysteresis to prevent output oscillations with loss of input; Type-2 receivers implement a failsafe by using an offset threshold. The xFSEN pins is used to select the Type-1 and Type-2 receiver for each of the channels. In addition, the driver rise and fall times are between 1ns and 2ns, complying with the M-LVDS standard to provide operation at 250Mbps while also accommodating stubs on the bus. Receiver outputs are slew rate controlled to reduce EMI and crosstalk effects associated with large current surges. The M-LVDS standard allows for 32 nodes on the bus providing a high-speed replacement for RS-485 where lower common-mode can be tolerated or when higher signaling rates are needed.

The driver logic inputs and the receiver logic outputs are on separate pins rather than tied together as in some transceiver designs. The drivers have separate enables (DE) and so does the receivers ( RE). This arrangement of separate logic inputs, logic outputs, and enable pins allows for a listen-while-talking operation. The devices are characterized for operation from –40°C to 85°C.

The SN65MLVD040 provides four half-duplex transceivers for transmitting and receiving Multipoint-Low-Voltage Differential Signals in full compliance with the TIA/EIA-899 (M-LVDS) standard, which are optimized to operate at signaling rates up to 250Mbps. The driver outputs have been designed to support multipoint buses presenting loads as low as 30Ω and incorporates controlled transition times to allow for stubs off of the backplane transmission line.

The M-LVDS standard defines two types of receivers, designated as Type-1 and Type-2. Type-1 receivers have thresholds centered about zero with 25mV of hysteresis to prevent output oscillations with loss of input; Type-2 receivers implement a failsafe by using an offset threshold. The xFSEN pins is used to select the Type-1 and Type-2 receiver for each of the channels. In addition, the driver rise and fall times are between 1ns and 2ns, complying with the M-LVDS standard to provide operation at 250Mbps while also accommodating stubs on the bus. Receiver outputs are slew rate controlled to reduce EMI and crosstalk effects associated with large current surges. The M-LVDS standard allows for 32 nodes on the bus providing a high-speed replacement for RS-485 where lower common-mode can be tolerated or when higher signaling rates are needed.

The driver logic inputs and the receiver logic outputs are on separate pins rather than tied together as in some transceiver designs. The drivers have separate enables (DE) and so does the receivers ( RE). This arrangement of separate logic inputs, logic outputs, and enable pins allows for a listen-while-talking operation. The devices are characterized for operation from –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

您可能會感興趣的類似產品

open-in-new 比較替代產品
功能與所比較的裝置相似
SN65MLVD080 現行 8 通道半雙工 M-LVDS 收發器 8-Channel M-LVDS Receiver Type-1
SN65MLVD082 現行 8 通道半雙工 M-LVDS 收發器 8-Channel M-LVDS Receiver Type-2

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 4
類型 標題 日期
* Data sheet SN65MLVD040 4-Channel Half-Duplex M-LVDS Line Transceivers datasheet (Rev. A) PDF | HTML 2024年 3月 1日
Application note An Introduction to M-LVDS and Clock and Data Distribution Applications (Rev. C) PDF | HTML 2023年 6月 22日
Application brief How Far, How Fast Can You Operate MLVDS? 2018年 8月 6日
Application note SPI-Based Data Acquisition/Monitor Using the TLC2551 Serial ADC (Rev. A) 2001年 11月 20日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

SN65MLVD040 IBIS Model

SLLM147.ZIP (203 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 針腳 CAD 符號、佔位空間與 3D 模型
VQFN (RGZ) 48 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片