適用安全相關應用中微控制器的多軌電源

產品詳細資料

Processor supplier Infineon, NXP/Freescale, Renesas, STMicroelectronics, Texas Instruments Processor name Aurix TC2x, Aurix TC3x, Aurix TC4x, C2000, Hercules TMS570, MPC56x, MPC57x, RH850, SPC56x, SPC57x, SPC58x Regulated outputs (#) 5 Step-down DC/DC converter 0 Step-up DC/DC converter 0 LDO 4 Vin (min) (V) 2.3 Vin (max) (V) 40 Vout (min) (V) 6 Vout (max) (V) 6 Iout (max) (A) 1 TI functional safety category Functional Safety-Compliant Configurability Factory programmable, Software configurable Features Diagnostics, MCU interface, Power supply and system monitoring Rating Automotive Operating temperature range (°C) -40 to 125 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.036 Switching frequency (max) (kHz) 2100 Switching frequency (typ) (kHz) 2000 Product type Microcontrollers
Processor supplier Infineon, NXP/Freescale, Renesas, STMicroelectronics, Texas Instruments Processor name Aurix TC2x, Aurix TC3x, Aurix TC4x, C2000, Hercules TMS570, MPC56x, MPC57x, RH850, SPC56x, SPC57x, SPC58x Regulated outputs (#) 5 Step-down DC/DC converter 0 Step-up DC/DC converter 0 LDO 4 Vin (min) (V) 2.3 Vin (max) (V) 40 Vout (min) (V) 6 Vout (max) (V) 6 Iout (max) (A) 1 TI functional safety category Functional Safety-Compliant Configurability Factory programmable, Software configurable Features Diagnostics, MCU interface, Power supply and system monitoring Rating Automotive Operating temperature range (°C) -40 to 125 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.036 Switching frequency (max) (kHz) 2100 Switching frequency (typ) (kHz) 2000 Product type Microcontrollers
HTSSOP (DCA) 48 101.25 mm² 12.5 x 8.1
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified with the Following Results:
    • Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature
    • Device HBM ESD Classification Level 2
    • Device CDM ESD Classification Level C4B
  • Functional Safety-Compliant
    • Developed for Functional Safety Applications
    • Documentation Available to Aid ISO 26262 System Design up to ASIL D
    • Systematic Capability and Hardware Integrity up to ASIL D
  • Input Voltage Range
    • 7 to 36-V for Initial Battery Power Up
    • 3.8 to 36-V Full Functionality After Initial Battery Power Up
    • Minimum 2.3 V During Operation After Wake-up
  • Supply Rails (With Internal FETs)
    • 6-V Synchronous Buck-Boost Preregulator
    • 5-V, 284-mA LDO (CAN)
    • 3.3-V or 5-V, 350-mA LDO (MCU)
    • 2 LDOs Protected for Sensor Supply or Peripherals
      • 120 mA for Sensor Supply 1 (VSOUT1), 60 mA for Sensor Supply 2 (VSOUT2)
      • Configurable Tracking Mode (Tracking Input Pin), or 3.3-V or 5-V Fixed Output Voltage
      • Short-to-Ground and Battery Protection
    • Charge Pump: 6-V Minimum, 11-V Maximum Above Battery Voltage
  • Monitoring and Protection
    • Independent Undervoltage and Overvoltage Monitoring on All Regulator Outputs, Battery Voltage, and Internal Supplies
    • Voltage Monitoring Circuitry, Including Independent Bandgap Reference, Supplied from Separate Battery Voltage Input Pin
    • Self-Check on All Voltage Monitoring (During Power-Up and After Power-Up Initiated by External MCU)
    • All Supplies Protected with Current Limit and Overtemperature Prewarning and Shutdown
  • Microcontroller Interface
    • Open and Close Window or Question-Answer Watchdog Function
    • Lock-Step MCU Error-Signal Monitor
    • DIAGNOSTIC state for Performing Device Self-Tests and System Diagnostics
    • SAFE State for Device and System Protection upon Detected System Failure
    • Clock Monitor for Internal Oscillator
    • Analog and Logic Built-In Self-Test
    • CRC on Non-Volatile Memory as well as Device and System Configuration Registers and SPI Communications
    • Reset Circuit for MCU
    • Diagnostic Output Pin
  • SPI With CRC on Command Plus Data
  • Error Reporting Through SPI Registers for Errors on System Level and Device Level
  • Enable-Drive Output for Disabling External Power-Stages on Any Detected System Failure
  • Wake-up through IGN Pin (Ignition) or CAN_WU Pin (Transceiver or Other Function)
  • 48-Pin HTSSOP PowerPAD™ IC Package
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified with the Following Results:
    • Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature
    • Device HBM ESD Classification Level 2
    • Device CDM ESD Classification Level C4B
  • Functional Safety-Compliant
    • Developed for Functional Safety Applications
    • Documentation Available to Aid ISO 26262 System Design up to ASIL D
    • Systematic Capability and Hardware Integrity up to ASIL D
  • Input Voltage Range
    • 7 to 36-V for Initial Battery Power Up
    • 3.8 to 36-V Full Functionality After Initial Battery Power Up
    • Minimum 2.3 V During Operation After Wake-up
  • Supply Rails (With Internal FETs)
    • 6-V Synchronous Buck-Boost Preregulator
    • 5-V, 284-mA LDO (CAN)
    • 3.3-V or 5-V, 350-mA LDO (MCU)
    • 2 LDOs Protected for Sensor Supply or Peripherals
      • 120 mA for Sensor Supply 1 (VSOUT1), 60 mA for Sensor Supply 2 (VSOUT2)
      • Configurable Tracking Mode (Tracking Input Pin), or 3.3-V or 5-V Fixed Output Voltage
      • Short-to-Ground and Battery Protection
    • Charge Pump: 6-V Minimum, 11-V Maximum Above Battery Voltage
  • Monitoring and Protection
    • Independent Undervoltage and Overvoltage Monitoring on All Regulator Outputs, Battery Voltage, and Internal Supplies
    • Voltage Monitoring Circuitry, Including Independent Bandgap Reference, Supplied from Separate Battery Voltage Input Pin
    • Self-Check on All Voltage Monitoring (During Power-Up and After Power-Up Initiated by External MCU)
    • All Supplies Protected with Current Limit and Overtemperature Prewarning and Shutdown
  • Microcontroller Interface
    • Open and Close Window or Question-Answer Watchdog Function
    • Lock-Step MCU Error-Signal Monitor
    • DIAGNOSTIC state for Performing Device Self-Tests and System Diagnostics
    • SAFE State for Device and System Protection upon Detected System Failure
    • Clock Monitor for Internal Oscillator
    • Analog and Logic Built-In Self-Test
    • CRC on Non-Volatile Memory as well as Device and System Configuration Registers and SPI Communications
    • Reset Circuit for MCU
    • Diagnostic Output Pin
  • SPI With CRC on Command Plus Data
  • Error Reporting Through SPI Registers for Errors on System Level and Device Level
  • Enable-Drive Output for Disabling External Power-Stages on Any Detected System Failure
  • Wake-up through IGN Pin (Ignition) or CAN_WU Pin (Transceiver or Other Function)
  • 48-Pin HTSSOP PowerPAD™ IC Package

The TPS653850-Q1 device is a multirail power supply designed to supply microcontrollers in safety relevant applications, such as those found in the automotive industry. The device supports microcontrollers with dual-core lockstep (LS) or loosely coupled architectures (LC).

The TPS653850-Q1 device integrates multiple supply rails to power the MCU, CAN or FlexRay, and external sensors. A buck-boost converter with internal FETs converts the input battery voltage between 2.3 V and 36 V to a 6-V preregulator output that supplies the other regulators. An integrated charge pump provides an overdrive voltage for the internal regulators, and can also be used to drive an external NMOS FET as reverse battery protection. The device supports wake-up from an ignition signal (IGN pin) or wake-up from a CAN transceiver or other signal (CAN_WU pin).

An independent voltage monitoring unit inside the device monitors undervoltage and overvoltage on all internal supply rails and regulator outputs of the battery supply. Regulator current limits and temperature protections are also implemented. The TPS653850-Q1 device features a question-answer watchdog, MCU error-signal monitor, clock monitoring on internal oscillator, self-check on clock monitor, cyclic redundancy check (CRC) on non-volatile memory and SPI communication, a diagnostic output pin allowing MCU to observe device internal analog and digital signals, a reset circuit for the MCU (NRES pin) and a safing output (ENDRV pin) to disable external power-stages on any detected system-failure. The device automatically runs a built-in self-test (BIST) at start up and the MCU may re-run the BIST during system run time through software control if needed. A dedicated DIAGNOSTIC state allows the MCU to check TPS653850-Q1 functionality.

The TPS653850-Q1 device also has an error reporting capability through the SPI register. The device has separate status bits in the SPI register for each specific error on the system level or device level. When the device detects a particular error condition, it sets the appropriate status bit and keeps this status bit set until the MCU reads-out the SPI register in which this status bit was set. Based on which status bit was set, the MCU can decide whether it must keep the system in a safe state or whether it can resume with the operation of the system.

The TPS653850-Q1 device is available in a 48-pin HTSSOP PowerPAD™ IC package.

The TPS653850-Q1 device is a multirail power supply designed to supply microcontrollers in safety relevant applications, such as those found in the automotive industry. The device supports microcontrollers with dual-core lockstep (LS) or loosely coupled architectures (LC).

The TPS653850-Q1 device integrates multiple supply rails to power the MCU, CAN or FlexRay, and external sensors. A buck-boost converter with internal FETs converts the input battery voltage between 2.3 V and 36 V to a 6-V preregulator output that supplies the other regulators. An integrated charge pump provides an overdrive voltage for the internal regulators, and can also be used to drive an external NMOS FET as reverse battery protection. The device supports wake-up from an ignition signal (IGN pin) or wake-up from a CAN transceiver or other signal (CAN_WU pin).

An independent voltage monitoring unit inside the device monitors undervoltage and overvoltage on all internal supply rails and regulator outputs of the battery supply. Regulator current limits and temperature protections are also implemented. The TPS653850-Q1 device features a question-answer watchdog, MCU error-signal monitor, clock monitoring on internal oscillator, self-check on clock monitor, cyclic redundancy check (CRC) on non-volatile memory and SPI communication, a diagnostic output pin allowing MCU to observe device internal analog and digital signals, a reset circuit for the MCU (NRES pin) and a safing output (ENDRV pin) to disable external power-stages on any detected system-failure. The device automatically runs a built-in self-test (BIST) at start up and the MCU may re-run the BIST during system run time through software control if needed. A dedicated DIAGNOSTIC state allows the MCU to check TPS653850-Q1 functionality.

The TPS653850-Q1 device also has an error reporting capability through the SPI register. The device has separate status bits in the SPI register for each specific error on the system level or device level. When the device detects a particular error condition, it sets the appropriate status bit and keeps this status bit set until the MCU reads-out the SPI register in which this status bit was set. Based on which status bit was set, the MCU can decide whether it must keep the system in a safe state or whether it can resume with the operation of the system.

The TPS653850-Q1 device is available in a 48-pin HTSSOP PowerPAD™ IC package.

下載

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet TPS653850-Q1 Multirail Power Supply for Microcontrollers in Safety-Relevant Apps datasheet (Rev. B) 2021年 2月 18日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點