SLVAFX0 October   2024 TLV702 , TLV703 , TLV755P , TPS74401 , TPS7A13 , TPS7A14 , TPS7A20 , TPS7A21 , TPS7A49 , TPS7A52 , TPS7A53 , TPS7A53B , TPS7A54 , TPS7A57 , TPS7A74 , TPS7A83A , TPS7A84A , TPS7A85A , TPS7A91 , TPS7A92 , TPS7A94 , TPS7A96 , TPS7H1111-SP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction to linear regulator turn-on time
  5. 2What impacts the LDO rise time?
    1. 2.1 Simple Use Cases
      1. 2.1.1 Case 1: LDO with an NR filter but without CFF capacitance
      2. 2.1.2 Case 2: NR filter with a CFF capacitance
      3. 2.1.3 Fast-charge circuitry
      4. 2.1.4 Non-ideal LDO behavior
        1. 2.1.4.1 Applied voltage bias
        2. 2.1.4.2 Fast charge current tolerance
        3. 2.1.4.3 Internal error amplifier offset voltage
        4. 2.1.4.4 Temperature impacts the fast-charge current source
        5. 2.1.4.5 Error amplifier common mode voltage
        6. 2.1.4.6 Reference voltage (VREF) ramp time dominates the turn-on time
        7. 2.1.4.7 Start-up during dropout mode
        8. 2.1.4.8 Large values of COUT induce internal current limit
        9. 2.1.4.9 Limitations of large-signal LDO bandwidth
    2. 2.2 Specific Use Cases and Examples
      1. 2.2.1 Case 3: Precision voltage reference with RNR/SS and parallel IFC fast charge
      2. 2.2.2 Case 4: Precision voltage reference with IFC fast charge and no RNR/SS
      3. 2.2.3 Case 5: Precision current reference
      4. 2.2.4 Case 6: Soft-start timing
  6. 3System Considerations
    1. 3.1 Inrush current calculation
    2. 3.2 Inrush current analysis
    3. 3.3 Maximum slew rate
  7. 4LDO regulators referenced in this paper
  8. 5Conclusion
  9. 6References

Large values of COUT induce internal current limit

The turn-on time of an LDO regulator with a significant capacitive load may induce the device to limit the current. In general, the current limit protection of an LDO regulator engages after 20µs to 50µs of operation where the load exceeds the current limit threshold. Thus, the previous discussion applies until current limit is engaged. After current limit engages the LDO approximates a current source charging the output capacitor COUT. Figure 2-13 shows the TPS7A20 loaded with small (1.4µF) output capacitance. While the device remains stable during a range between 0.47µF and 200µF load capacitance, operation at higher values of load capacitance may trigger current limit during startup, slowing down the turn-on time. (See Figure 2-14)

TPS7A20, TPS7A21, TPS7A13, TPS7A14, TPS7A49, TPS7A91, TPS7A92, TLV702, TLV703, TLV755P, TPS7A52, TPS7A53, TPS7A53B, TPS7A54, TPS7A83A, TPS7A84A, TPS7A85A, TPS7A57, TPS7A94, TPS7A96, TPS7H1111-SP, TPS74401, TPS7A74, TPS74701, TPS74801, TPS74901 TPS7A20  turn-on
                        comparisonFigure 2-13 TPS7A20 turn-on comparison
TPS7A20, TPS7A21, TPS7A13, TPS7A14, TPS7A49, TPS7A91, TPS7A92, TLV702, TLV703, TLV755P, TPS7A52, TPS7A53, TPS7A53B, TPS7A54, TPS7A83A, TPS7A84A, TPS7A85A, TPS7A57, TPS7A94, TPS7A96, TPS7H1111-SP, TPS74401, TPS7A74, TPS74701, TPS74801, TPS74901 The TPS7A20 current limit
                        engages at approximately 25µs during turn-onFigure 2-14 The TPS7A20 current limit engages at approximately 25µs during turn-on