SBAA532A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Bridge Overview
  5. 2Bridge Construction
    1. 2.1 Active Elements in Bridge Topologies
      1. 2.1.1 Bridge With One Active Element
        1. 2.1.1.1 Reducing Non-Linearity in a Bridge With One Active Element Using Current Excitation
      2. 2.1.2 Bridge With Two Active Elements in Opposite Branches
        1. 2.1.2.1 Eliminating Non-Linearity in a Bridge With Two Active Elements in Opposite Branches Using Current Excitation
      3. 2.1.3 Bridge With Two Active Elements in the Same Branch
      4. 2.1.4 Bridge With Four Active Elements
    2. 2.2 Strain Gauge and Bridge Construction
  6. 3Bridge Connections
    1. 3.1 Ratiometric Measurements
    2. 3.2 Four-Wire Bridge
    3. 3.3 Six-Wire Bridge
  7. 4Electrical Characteristics of Bridge Measurements
    1. 4.1 Bridge Sensitivity
    2. 4.2 Bridge Resistance
    3. 4.3 Output Common-Mode Voltage
    4. 4.4 Offset Voltage
    5. 4.5 Full-Scale Error
    6. 4.6 Non-Linearity Error and Hysteresis
    7. 4.7 Drift
    8. 4.8 Creep and Creep Recovery
  8. 5Signal Chain Design Considerations
    1. 5.1 Amplification
      1. 5.1.1 Instrumentation Amplifier
        1. 5.1.1.1 INA Architecture and Operation
        2. 5.1.1.2 INA Error Sources
      2. 5.1.2 Integrated PGA
        1. 5.1.2.1 Integrated PGA Architecture and Operation
        2. 5.1.2.2 Benefits of Using an Integrated PGA
    2. 5.2 Noise
      1. 5.2.1 Noise in an ADC Data Sheet
      2. 5.2.2 Calculating NFC for a Bridge Measurement System
    3. 5.3 Channel Scan Time and Signal Bandwidth
      1. 5.3.1 Noise Performance
      2. 5.3.2 ADC Conversion Latency
      3. 5.3.3 Digital Filter Frequency Response
    4. 5.4 AC Excitation
    5. 5.5 Calibration
      1. 5.5.1 Offset Calibration
      2. 5.5.2 Gain Calibration
      3. 5.5.3 Calibration Example
  9. 6Bridge Measurement Circuits
    1. 6.1 Four-Wire Resistive Bridge Measurement with a Ratiometric Reference and a Unipolar, Low-Voltage (≤5 V) Excitation Source
      1. 6.1.1 Schematic
      2. 6.1.2 Pros and Cons
      3. 6.1.3 Parameters and Variables
      4. 6.1.4 Design Notes
      5. 6.1.5 Measurement Conversion
      6. 6.1.6 Generic Register Settings
    2. 6.2 Six-Wire Resistive Bridge Measurement With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.2.1 Schematic
      2. 6.2.2 Pros and Cons
      3. 6.2.3 Parameters and Variables
      4. 6.2.4 Design Notes
      5. 6.2.5 Measurement Conversion
      6. 6.2.6 Generic Register Settings
    3. 6.3 Four-Wire Resistive Bridge Measurement With a Pseudo-Ratiometric Reference and a Unipolar, High-Voltage (> 5 V) Excitation Source
      1. 6.3.1 Schematic
      2. 6.3.2 Pros and Cons
      3. 6.3.3 Parameters and Variables
      4. 6.3.4 Design Notes
      5. 6.3.5 Measurement Conversion
      6. 6.3.6 Generic Register Settings
    4. 6.4 Four-Wire Resistive Bridge Measurement with a Pseudo-Ratiometric Reference and Asymmetric, High-Voltage (> 5 V) Excitation Source
      1. 6.4.1 Schematic
      2. 6.4.2 Pros and Cons
      3. 6.4.3 Parameters and Variables
      4. 6.4.4 Design Notes
      5. 6.4.5 Measurement Conversion
      6. 6.4.6 Generic Register Settings
    5. 6.5 Four-Wire Resistive Bridge Measurement With a Ratiometric Reference and Current Excitation
      1. 6.5.1 Schematic
      2. 6.5.2 Pros and Cons
      3. 6.5.3 Parameters and Variables
      4. 6.5.4 Design Notes
      5. 6.5.5 Measurement Conversion
      6. 6.5.6 Generic Register Settings
    6. 6.6 Measuring Multiple Four-Wire Resistive Bridges in Series with a Pseudo-Ratiometric Reference and a Unipolar, Low-Voltage (≤5V) Excitation Source
      1. 6.6.1 Schematic
      2. 6.6.2 Pros and Cons
      3. 6.6.3 Parameters and Variables
      4. 6.6.4 Design Notes
      5. 6.6.5 Measurement Conversion
      6. 6.6.6 Generic Register Settings
    7. 6.7 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Single-Channel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.7.1 Schematic
      2. 6.7.2 Pros and Cons
      3. 6.7.3 Parameters and Variables
      4. 6.7.4 Design Notes
      5. 6.7.5 Measurement Conversion
      6. 6.7.6 Generic Register Settings
    8. 6.8 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Multichannel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.8.1 Schematic
      2. 6.8.2 Pros and Cons
      3. 6.8.3 Parameters and Variables
      4. 6.8.4 Design Notes
      5. 6.8.5 Measurement Conversion
      6. 6.8.6 Generic Register Settings
  10. 7Summary
  11. 8Revision History

Offset Calibration

The first calibration step is to measure and remove the offset voltage. Offset may come from an inherent bridge imbalance, from the signal conditioning circuitry, or both. Offset is the measured value that represents zero applied load, and can be either positive or negative. During an offset calibration, the ADC measures the system output with no applied load. The resulting ADC code is stored as the offset calibration constant. The microcontroller subtracts this offset value from subsequent ADC measurements before calculating the measured weight. Note that the offset measurement itself has some noise. Reduce the noise of the stored offset voltage by averaging multiple consecutive offset measurements.

Figure 5-13 shows how an offset calibration changes the bridge measurement response before (red) and after (blue) the calibration process.

GUID-20211110-SS0I-FZJG-NV2J-BF3SRC8SNDKT-low.svgFigure 5-13 First Calibration Step Calculates and Remove Offset (BActual)

Figure 5-13 reveals that the purpose of an offset calibration is to measure the y-axis intercept (BActual) of the uncalibrated response. This value is then removed from the final result so that the system output is zero with no load applied, similar to BIdeal. The calibration process therefore shifts the bridge measurement response from the red, uncalibrated plot to the blue, calibrated plot. This first step describes a one-point calibration as per Section 5.5.

One important characteristic of both plots in Figure 5-13 is that the blue, calibrated response has the same slope (MActual) as the red, uncalibrated response. In other words, the blue, calibrated response can still have a significant gain error compared to the green, ideal response from Figure 5-11. The second calibration step corrects this issue by calculating the slope of the actual bridge response to help determine the gain error.