SLUAAO2 March 2023 CSD13201W10 , CSD13202Q2 , CSD13302W , CSD13303W1015 , CSD13306W , CSD13380F3 , CSD13381F4 , CSD13383F4 , CSD13385F5 , CSD15380F3 , CSD15571Q2 , CSD16301Q2 , CSD16321Q5 , CSD16322Q5 , CSD16323Q3 , CSD16325Q5 , CSD16327Q3 , CSD16340Q3 , CSD16342Q5A , CSD16401Q5 , CSD16403Q5A , CSD16404Q5A , CSD16406Q3 , CSD16407Q5 , CSD16408Q5 , CSD16409Q3 , CSD16410Q5A , CSD16411Q3 , CSD16412Q5A , CSD16413Q5A , CSD16414Q5 , CSD16415Q5 , CSD16556Q5B , CSD16570Q5B , CSD17301Q5A , CSD17302Q5A , CSD17303Q5 , CSD17304Q3 , CSD17305Q5A , CSD17306Q5A , CSD17307Q5A , CSD17308Q3 , CSD17309Q3 , CSD17310Q5A , CSD17311Q5 , CSD17312Q5 , CSD17313Q2 , CSD17318Q2 , CSD17322Q5A , CSD17327Q5A , CSD17381F4 , CSD17382F4 , CSD17483F4 , CSD17484F4 , CSD17501Q5A , CSD17505Q5A , CSD17506Q5A , CSD17507Q5A , CSD17510Q5A , CSD17522Q5A , CSD17527Q5A , CSD17551Q3A , CSD17551Q5A , CSD17552Q3A , CSD17552Q5A , CSD17553Q5A , CSD17555Q5A , CSD17556Q5B , CSD17559Q5 , CSD17570Q5B , CSD17571Q2 , CSD17573Q5B , CSD17575Q3 , CSD17576Q5B , CSD17577Q3A , CSD17577Q5A , CSD17578Q3A , CSD17578Q5A , CSD17579Q3A , CSD17579Q5A , CSD17581Q3A , CSD17581Q5A , CSD17585F5 , CSD18501Q5A , CSD18502KCS , CSD18502Q5B , CSD18503KCS , CSD18503Q5A , CSD18504KCS , CSD18504Q5A , CSD18509Q5B , CSD18510KCS , CSD18510KTT , CSD18510Q5B , CSD18511KCS , CSD18511KTT , CSD18511Q5A , CSD18512Q5B , CSD18513Q5A , CSD18514Q5A , CSD18531Q5A , CSD18532KCS , CSD18532NQ5B , CSD18532Q5B , CSD18533KCS , CSD18533Q5A , CSD18534KCS , CSD18534Q5A , CSD18535KCS , CSD18535KTT , CSD18536KCS , CSD18536KTT , CSD18537NKCS , CSD18537NQ5A , CSD18540Q5B , CSD18541F5 , CSD18542KCS , CSD18542KTT , CSD18543Q3A , CSD18563Q5A , CSD19501KCS , CSD19502Q5B , CSD19503KCS , CSD19505KCS , CSD19505KTT , CSD19506KCS , CSD19506KTT , CSD19531KCS , CSD19531Q5A , CSD19532KTT , CSD19532Q5B , CSD19533KCS , CSD19533Q5A , CSD19534KCS , CSD19534Q5A , CSD19535KCS , CSD19535KTT , CSD19536KCS , CSD19536KTT , CSD19537Q3 , CSD19538Q2 , CSD19538Q3A , CSD22202W15 , CSD22204W , CSD22205L , CSD22206W , CSD23202W10 , CSD23203W , CSD23280F3 , CSD23285F5 , CSD23381F4 , CSD23382F4 , CSD25202W15 , CSD25211W1015 , CSD25213W10 , CSD25304W1015 , CSD25310Q2 , CSD25402Q3A , CSD25404Q3 , CSD25480F3 , CSD25481F4 , CSD25483F4 , CSD25484F4 , CSD25485F5 , CSD25501F3 , CSD75207W15 , CSD75208W1015 , CSD83325L , CSD85301Q2 , CSD85302L , CSD85312Q3E , CSD86311W1723 , CSD87312Q3E , CSD87313DMS , CSD87501L , CSD87502Q2 , CSD87503Q3E , CSD88537ND , CSD88539ND
What if the waveforms are not square? TI performs SOA testing to destruction using square waveforms as shown in Figure 7-1.
In section 2.3.3 of the above mentioned application report, Robust Hot Swap Design, a method is presented for approximating the MOSFET stress as a square pulse with equivalent energy and pulse width as follows:
In many applications, one of the waveforms is a linear ramp while the other is held constant. For example, in a hot swap circuit during inrush, VDS is ramping down while IDS is constant as shown in Figure 7-2.
For this example, assume VDS decays linearly from 12 V down to 0 V in 20 ms while IDS = 6 A. The energy, E1, in the pink shaded area under the power curve is calculated as follows:
For the equivalent square pulse, the energy in the blue shaded area is assumed to be equal and the power P2 is the same as the maximum power in the non-square pulse.
Inserting the values from the example:
Next, go back and confirm that the equivalent square pulse, VDS = 12 V and IDS = 6 A is below the 10 ms curve on the CSD17570Q5B SOA curve as shown in Figure 7-3.
This methodology can be extended for use with other types of pulses including non-monotonic, exponential, constant power, and so on.