SLVA959B November   2018  – October 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   Trademarks
  2. 1Grounding Optimization
    1. 1.1 Frequently Used Terms/Connections
    2. 1.2 Using a Ground Plane
      1. 1.2.1 Two-Layer Board Techniques
    3. 1.3 Common Problems
      1. 1.3.1 Capacitive and Inductive Coupling
      2. 1.3.2 Common and Differential Noise
    4. 1.4 EMC Considerations
  3. 2Thermal Overview
    1. 2.1 PCB Conduction and Convection
    2. 2.2 Continuous Top-Layer Thermal Pad
    3. 2.3 Copper Thickness
    4. 2.4 Thermal Via Connections
    5. 2.5 Thermal Via Width
    6. 2.6 Summary of Thermal Design
  4. 3Vias
    1. 3.1 Via Current Capacity
    2. 3.2 Via Layout Recommendations
      1. 3.2.1 Multi-Via Layout
      2. 3.2.2 Via Placement
  5. 4General Routing Techniques
  6. 5Bulk and Bypass Capacitor Placement
    1. 5.1 Bulk Capacitor Placement
    2. 5.2 Charge Pump Capacitor
    3. 5.3 Bypass/Decoupling Capacitor Placement
      1. 5.3.1 Near Power Supply
      2. 5.3.2 Near Power Stage
      3. 5.3.3 Near Switch Current Source
      4. 5.3.4 Near Current Sense Amplifiers
      5. 5.3.5 Near Voltage Regulators
  7. 6MOSFET Placement and Power Stage Routing
    1. 6.1 Common Power MOSFET Packages
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8-Pin SON
    2. 6.2 MOSFET Layout Configurations
    3. 6.3 Power Stage Layout Design
      1. 6.3.1 Switch Node
      2. 6.3.2 High-Current Loop Paths
      3. 6.3.3 VDRAIN Sense Pin
  8. 7Current Sense Amplifier Routing
    1. 7.1 Single High-Side Current Shunt
    2. 7.2 Single Low-Side Current Shunt
    3. 7.3 Two-Phase and Three-Phase Current Shunt Amplifiers
    4. 7.4 Component Selection
    5. 7.5 Placement
    6. 7.6 Routing
    7. 7.7 Useful Tools (Net Ties and Differential Pairs)
    8. 7.8 Input and Output Filters
    9. 7.9 Do's and Don'ts
  9. 8References
  10. 9Revision History

EMC Considerations

The electromagnetic compatibility (EMC) primarily depends on the layout and the electrical connection between the components.

The return path of each signal must flow from the resource to the signal origin which creates current loops. This line loop creates an antenna that can radiate electromagnetic energy which is determined by the current amplitude, the repetition frequency of the signal, and the geometrical area of the current loops. It is recommended to minimize these current loops for optimal EMC performance, Figure 1-6 shows common types of current loops.

GUID-615B1109-E4FC-4733-94D3-D43F88E6A2F2-low.gifFigure 1-6 Current Paths in an Electronic System

The supply lines in Figure 1-6 form loops A–C–D–B and A–E–F–B. The energy that the system requires to operate is conducted by these lines.

Loops L-M-F-D, N-Q-P-F, and G-H-J-K are formed by signals and controls. The area these lines enclose is usually small if those lines outside the system are not considered. However, these lines must be considered at high frequency because they often transmit signals which can affect EMC performance.

Current loops can also form when connectors, headers, or other components break up a ground plane. This causes high-frequency components of switching currents to travel further around the board and effectively create a large loop. This can also occur with vias and is highlighted in Section 3.2.2