전원 관리 전원 스위치 eFuse 및 핫 스왑 컨트롤러

TPS2330

활성

액티브 로우 활성화를 지원하는 3V~13V 핫 스왑 컨트롤러

이 제품의 최신 버전이 있습니다

open-in-new 대안 비교
비교 대상 장치와 유사한 기능
LM25069 활성 전원 제한 및 전력 양호를 지원하는 2.9V~17V 핫 스왑 컨트롤러 Improved voltage range with extra features such as under and over voltage protection.

제품 상세 정보

FET External Vin (min) (V) 3 Vin (max) (V) 13 Vabsmax_cont (V) 15 Current limit (min) (A) 0.01 Current limit (max) (A) 500 Overcurrent response Circuit breaker, current limiting Fault response Latch-off Soft start Adjustable Features Fault output, Power good signal Rating Catalog Device type eFuses and hot swap controllers Operating temperature range (°C) -40 to 85 Function Inrush current control, Power good signal Quiescent current (Iq) (typ) (A) 0.0058 Quiescent current (Iq) (max) (A) 0.008
FET External Vin (min) (V) 3 Vin (max) (V) 13 Vabsmax_cont (V) 15 Current limit (min) (A) 0.01 Current limit (max) (A) 500 Overcurrent response Circuit breaker, current limiting Fault response Latch-off Soft start Adjustable Features Fault output, Power good signal Rating Catalog Device type eFuses and hot swap controllers Operating temperature range (°C) -40 to 85 Function Inrush current control, Power good signal Quiescent current (Iq) (typ) (A) 0.0058 Quiescent current (Iq) (max) (A) 0.008
SOIC (D) 14 51.9 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Single-Channel High-Side MOSFET Driver
  • Input Voltage: 3 V to 13 V
  • Output dV/dt Control Limits Inrush Current
  • Circuit-Breaker With Programmable Overcurrent
    Threshold and Transient Timer
  • Power-Good Reporting With Transient Filter
  • CMOS- and TTL-Compatible Enable Input
  • Low 5-µA Standby Supply Current (Max)
  • Available in 14-Pin SOIC and TSSOP Package
  • –40°C to 85°C Ambient Temperature Range
  • Electrostatic Discharge Protection
  • Single-Channel High-Side MOSFET Driver
  • Input Voltage: 3 V to 13 V
  • Output dV/dt Control Limits Inrush Current
  • Circuit-Breaker With Programmable Overcurrent
    Threshold and Transient Timer
  • Power-Good Reporting With Transient Filter
  • CMOS- and TTL-Compatible Enable Input
  • Low 5-µA Standby Supply Current (Max)
  • Available in 14-Pin SOIC and TSSOP Package
  • –40°C to 85°C Ambient Temperature Range
  • Electrostatic Discharge Protection

The TPS2330 and TPS2331 are single-channel hot-swap controllers that use external N-channel MOSFETs as high-side switches in power applications. Features of these devices, such as overcurrent protection (OCP), inrush-current control, output-power status reporting, and the ability to discriminate between load transients and faults, are critical requirements for hot-swap applications.

The TPS2330/31 devices incorporate undervoltage lockout (UVLO) and power-good (PG) reporting to ensure the device is off at start-up and confirm the status of the output voltage rails during operation. An internal charge pump, capable of driving multiple MOSFETs, provides enough gate-drive voltage to fully enhance the N-channel MOSFETs. The charge pump controls both the rise times and fall times (dV/dt) of the MOSFETs, reducing power transients during power up/down. The circuit-breaker functionality combines the ability to sense overcurrent conditions with a timer function; this allows designs such as DSPs, that may have high peak currents during power-state transitions, to disregard transients for a programmable period.

DISCH – DISCH should be connected to the source of the external N-channel MOSFET transistor connected to GATE. This pin discharges the load when the MOSFET transistor is disabled. They also serve as reference-voltage connection for internal gate-voltage-clamp circuitry.

ENABLE or ENABLE –  ENABLE for TPS2330 is active-low. ENABLE for TPS2331 is active-high. When the controller is enabled, GATE voltage powers up to turn on the external MOSFETs. When the ENABLE pin is pulled high for TPS2330 or the ENABLE pin is pulled low for TPS2331 for more than 50 µs, the gate of the MOSFET is discharged at a controlled rate by a current source, and a transistor is enabled to discharge the output bulk capacitance. In addition, the device turns on the internal regulator PREREG (see VREG) when enabled and shuts down PREREG when disabled so that total supply current is much less than 5 µA.

FAULT  –  FAULT is an open-drain overcurrent flag output. When an overcurrent condition is sustained long enough to charge TIMER to 0.5 V, the device latches off and pulls FAULT low. In order to turn the device back on, either the enable pin must be toggled or the input power must be cycled.

GATE – GATE connects to the gate of the external N-channel MOSFET transistor. When the device is enabled, internal charge-pump circuitry pulls this pin up by sourcing approximately 15 µA. The turnon slew rates depend on the capacitance present at the GATE terminal. If desired, the turnon slew rates can be further reduced by connecting capacitors between this pin and ground. These capacitors also reduce inrush current and protect the device from false overcurrent triggering during power up. The charge-pump circuitry generates gate-to-source voltages of 9 V–12 V across the external MOSFET transistor.

IN – IN should be connected to the power source driving the external N-channel MOSFET transistor connected to GATE. The TPS2330/31 draws its operating current from IN, and remains disabled until the IN power supply has been established. The device has been constructed to support 3-V, 5-V, or 12-V operation.

ISENSE, ISET – ISENSE in combination with ISET implements overcurrent sensing for GATE. ISET sets the magnitude of the current that generates an overcurrent fault, through an external resistor connected to ISET. An internal current source draws 50 µA from ISET. With a sense resistor from IN to ISENSE, which is also connected to the drain of the external MOSFET, the voltage on the sense resistor reflects the load current. An overcurrent condition is assumed to exist if ISENSE is pulled below ISET. To ensure proper circuit breaker operation, VI(ISENSE) and VI(ISET) should never exceed VI(IN).

PWRGD – PWRGD signals the presence of undervoltage conditions on VSENSE. The pin is an open-drain output and is pulled low during an undervoltage condition. To minimize erroneous PWRGD responses from transients on the voltage rail, the voltage sense circuit incorporates a 20-µs deglitch filter. When VSENSE is lower than the reference voltage (about 1.23 V), PWRGD is active-low to indicate an undervoltage condition on the power-rail voltage. PWRGD may not correctly report power conditions when the device is disabled because there is no gate drive power for the PWRGD output transistor in the disable mode, or, in other words, PWRGD is floating. Therefore, PWRGD is pulled up to its pullup power supply rail in disable mode.

TIMER – A capacitor on TIMER sets the time during which the power switch can be in overcurrent before turning off. When the overcurrent protection circuits sense an excessive current, a current source is enabled which charges the capacitor on TIMER. Once the voltage on TIMER reaches approximately 0.5 V, the circuit-breaker latch is set and the power switch is latched off. Power must be recycled or the ENABLE pin must be toggled to restart the controller. In high-power or high-temperature applications, a minimum 50-pF capacitor is strongly recommended from TIMER to ground, to prevent any false triggering.

VREG – VREG is the output of an internal low-dropout voltage regulator, where IN1 is the input. The regulator is used to generate a regulated voltage source, less than 5.5 V, for the device. A 0.1-µF ceramic capacitor should be connected between VREG and ground to aid in noise rejection. In this configuration, on disabling the device, the internal low-dropout regulator also is disabled, which removes power from the internal circuitry and allows the device to be placed in low-quiescent-current mode. In applications where IN1 is less than 5.5 V, VREG and IN1 may be connected together. However, under these conditions, disabling the device may not place the device in low-quiescent-current mode, because the internal low-dropout voltage regulator is being bypassed, thereby keeping internal circuitry operational. If VREG and IN1 are connected together, a 0.1-µF ceramic capacitor between VREG and ground is not needed if IN1 already has a bypass capacitor of 1 µF to 10 µF.

VSENSE – VSENSE can be used to detect undervoltage conditions on external circuitry. If VSENSE senses a voltage below approximately 1.23 V, PWRGD is pulled low.

The TPS2330 and TPS2331 are single-channel hot-swap controllers that use external N-channel MOSFETs as high-side switches in power applications. Features of these devices, such as overcurrent protection (OCP), inrush-current control, output-power status reporting, and the ability to discriminate between load transients and faults, are critical requirements for hot-swap applications.

The TPS2330/31 devices incorporate undervoltage lockout (UVLO) and power-good (PG) reporting to ensure the device is off at start-up and confirm the status of the output voltage rails during operation. An internal charge pump, capable of driving multiple MOSFETs, provides enough gate-drive voltage to fully enhance the N-channel MOSFETs. The charge pump controls both the rise times and fall times (dV/dt) of the MOSFETs, reducing power transients during power up/down. The circuit-breaker functionality combines the ability to sense overcurrent conditions with a timer function; this allows designs such as DSPs, that may have high peak currents during power-state transitions, to disregard transients for a programmable period.

DISCH – DISCH should be connected to the source of the external N-channel MOSFET transistor connected to GATE. This pin discharges the load when the MOSFET transistor is disabled. They also serve as reference-voltage connection for internal gate-voltage-clamp circuitry.

ENABLE or ENABLE –  ENABLE for TPS2330 is active-low. ENABLE for TPS2331 is active-high. When the controller is enabled, GATE voltage powers up to turn on the external MOSFETs. When the ENABLE pin is pulled high for TPS2330 or the ENABLE pin is pulled low for TPS2331 for more than 50 µs, the gate of the MOSFET is discharged at a controlled rate by a current source, and a transistor is enabled to discharge the output bulk capacitance. In addition, the device turns on the internal regulator PREREG (see VREG) when enabled and shuts down PREREG when disabled so that total supply current is much less than 5 µA.

FAULT  –  FAULT is an open-drain overcurrent flag output. When an overcurrent condition is sustained long enough to charge TIMER to 0.5 V, the device latches off and pulls FAULT low. In order to turn the device back on, either the enable pin must be toggled or the input power must be cycled.

GATE – GATE connects to the gate of the external N-channel MOSFET transistor. When the device is enabled, internal charge-pump circuitry pulls this pin up by sourcing approximately 15 µA. The turnon slew rates depend on the capacitance present at the GATE terminal. If desired, the turnon slew rates can be further reduced by connecting capacitors between this pin and ground. These capacitors also reduce inrush current and protect the device from false overcurrent triggering during power up. The charge-pump circuitry generates gate-to-source voltages of 9 V–12 V across the external MOSFET transistor.

IN – IN should be connected to the power source driving the external N-channel MOSFET transistor connected to GATE. The TPS2330/31 draws its operating current from IN, and remains disabled until the IN power supply has been established. The device has been constructed to support 3-V, 5-V, or 12-V operation.

ISENSE, ISET – ISENSE in combination with ISET implements overcurrent sensing for GATE. ISET sets the magnitude of the current that generates an overcurrent fault, through an external resistor connected to ISET. An internal current source draws 50 µA from ISET. With a sense resistor from IN to ISENSE, which is also connected to the drain of the external MOSFET, the voltage on the sense resistor reflects the load current. An overcurrent condition is assumed to exist if ISENSE is pulled below ISET. To ensure proper circuit breaker operation, VI(ISENSE) and VI(ISET) should never exceed VI(IN).

PWRGD – PWRGD signals the presence of undervoltage conditions on VSENSE. The pin is an open-drain output and is pulled low during an undervoltage condition. To minimize erroneous PWRGD responses from transients on the voltage rail, the voltage sense circuit incorporates a 20-µs deglitch filter. When VSENSE is lower than the reference voltage (about 1.23 V), PWRGD is active-low to indicate an undervoltage condition on the power-rail voltage. PWRGD may not correctly report power conditions when the device is disabled because there is no gate drive power for the PWRGD output transistor in the disable mode, or, in other words, PWRGD is floating. Therefore, PWRGD is pulled up to its pullup power supply rail in disable mode.

TIMER – A capacitor on TIMER sets the time during which the power switch can be in overcurrent before turning off. When the overcurrent protection circuits sense an excessive current, a current source is enabled which charges the capacitor on TIMER. Once the voltage on TIMER reaches approximately 0.5 V, the circuit-breaker latch is set and the power switch is latched off. Power must be recycled or the ENABLE pin must be toggled to restart the controller. In high-power or high-temperature applications, a minimum 50-pF capacitor is strongly recommended from TIMER to ground, to prevent any false triggering.

VREG – VREG is the output of an internal low-dropout voltage regulator, where IN1 is the input. The regulator is used to generate a regulated voltage source, less than 5.5 V, for the device. A 0.1-µF ceramic capacitor should be connected between VREG and ground to aid in noise rejection. In this configuration, on disabling the device, the internal low-dropout regulator also is disabled, which removes power from the internal circuitry and allows the device to be placed in low-quiescent-current mode. In applications where IN1 is less than 5.5 V, VREG and IN1 may be connected together. However, under these conditions, disabling the device may not place the device in low-quiescent-current mode, because the internal low-dropout voltage regulator is being bypassed, thereby keeping internal circuitry operational. If VREG and IN1 are connected together, a 0.1-µF ceramic capacitor between VREG and ground is not needed if IN1 already has a bypass capacitor of 1 µF to 10 µF.

VSENSE – VSENSE can be used to detect undervoltage conditions on external circuitry. If VSENSE senses a voltage below approximately 1.23 V, PWRGD is pulled low.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
6개 모두 보기
유형 직함 날짜
* Data sheet Single Hot-Swap Power Controllers with Circuit Breaker and Power Good Reporting datasheet (Rev. G) 2013/05/10
User guide TPS5102 Buck Controller Evaluation Module User's Guide (Rev. A) PDF | HTML 2022/03/14
Selection guide Power Management Guide 2018 (Rev. R) 2018/06/25
Selection guide Hot Swap Selection Tool 2015/07/28
User guide 48-V Telecom Hot-Swap Evaluation Module and Interface Card 2001/03/01
User guide Dual Hot Swap Controller Evaluation Module and Interface Card 2000/04/10

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

계산 툴

TPS23XXCALC TPS230x/1x/2x/3x Design Calculator

This design utility allows the user to calculate the component values for external MOSFET, current limit setting, current limit sense resistor RSENSE, current limit setting resistor RSET, GATE capacitance Cg, TIMER capacitance CT, power-good feedback resistor divider, and other essential components (...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

제품
eFuse 및 핫 스왑 컨트롤러
TPS2300 독립 채널 회로 차단 및 액티브 로우 활성화를 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2301 독립 채널 회로 차단 및 전원 양호 기능을 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2310 상호 의존적 채널 회로 차단 및 액티브 로우 활성화를 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2311 상호 의존적 채널 회로 차단 및 전원 양호 기능을 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2320 액티브 로우 활성화를 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2321 액티브 하이 활성화를 지원하는 3V~13V 듀얼 채널 핫 스왑 TPS2330 액티브 로우 활성화를 지원하는 3V~13V 핫 스왑 컨트롤러 TPS2331 액티브 하이 활성화를 지원하는 3V~13-V 핫 스왑 컨트롤러
계산 툴

TVS-RECOMMENDATION-CALC TVS diode recommendation tool

This tool suggests suitable TVS for given system parameters and abs max voltage rating of the device.
지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

이 설계 리소스는 이러한 범주의 제품 대부분을 지원합니다.

제품 세부 정보 페이지에서 지원을 확인하십시오.

시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
패키지 CAD 기호, 풋프린트 및 3D 모델
SOIC (D) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상