Inicio Interfaz Otras interfaces

DS90CR486

ACTIVO

Deserializador Channel Link de 48 bits y 133 MHz

Detalles del producto

Protocols Catalog Rating Catalog Operating temperature range (°C) -10 to 70
Protocols Catalog Rating Catalog Operating temperature range (°C) -10 to 70
QFP (NEZ) 100 256 mm² 16 x 16
  • Up to 6.384 Gbps Throughput
  • 66MHz to 133MHz Input Clock Support
  • Reduces Cable and Connector Size and Cost
  • Cable Deskew Function
  • DC Balance Reduces ISI Distortion
  • For Point-to-Point Backplane or Cable Applications
  • Low Power, 890 mW Typ at 133MHz
  • Flow through Pinout for Easy PCB Design
  • +3.3V Supply Voltage
  • 100-pin TQFP Package
  • Conforms to TIA/EIA-644-A-2001 LVDS Standard

All trademarks are the property of their respective owners.

  • Up to 6.384 Gbps Throughput
  • 66MHz to 133MHz Input Clock Support
  • Reduces Cable and Connector Size and Cost
  • Cable Deskew Function
  • DC Balance Reduces ISI Distortion
  • For Point-to-Point Backplane or Cable Applications
  • Low Power, 890 mW Typ at 133MHz
  • Flow through Pinout for Easy PCB Design
  • +3.3V Supply Voltage
  • 100-pin TQFP Package
  • Conforms to TIA/EIA-644-A-2001 LVDS Standard

All trademarks are the property of their respective owners.

The DS90CR486 receiver converts eight Low Voltage Differential Signaling (LVDS) data streams back into 48 bits of LVCMOS/LVTTL data. Using a 133MHz clock, the data throughput is 6.384Gbit/s (798Mbytes/s).

The multiplexing of data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 48-bit wide data and one clock, up to 98 conductors are required. With this Channel Link chipset as few as 19 conductors (8 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides an 80% reduction in interconnect width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.

The DS90CR486 deserializer is improved over prior generations of Channel Link devices and offers higher bandwidth support and longer cable drive with three areas of enhancement. To increase bandwidth, the maximum clock rate is increased to 133 MHz and 8 serialized LVDS outputs are provided. Cable drive is enhanced with a user selectable pre-emphasis (on DS90CR485) feature that provides additional output current during transitions to counteract cable loading effects. Optional DC balancing on a cycle-to-cycle basis, is also provided to reduce ISI (Inter-Symbol Interference). With pre-emphasis and DC balancing, a low distortion eye-pattern is provided at the receiver end of the cable. A cable deskew capability has been added to deskew long cables of pair-to-pair skew. These three enhancements allow long cables to be driven.

The DS90CR486 is intended to be used with the DS90CR485 Channel Link Serializer. It is also backward compatible with serializers DS90CR481 and DS90CR483. The DS90CR486 is footprint compatible with the DS90CR484.

The chipset is an ideal solution to solve EMI and interconnect size problems for high-throughput point-to-point applications.

For more details, please refer to the section of this datasheet.

The DS90CR486 receiver converts eight Low Voltage Differential Signaling (LVDS) data streams back into 48 bits of LVCMOS/LVTTL data. Using a 133MHz clock, the data throughput is 6.384Gbit/s (798Mbytes/s).

The multiplexing of data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 48-bit wide data and one clock, up to 98 conductors are required. With this Channel Link chipset as few as 19 conductors (8 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides an 80% reduction in interconnect width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.

The DS90CR486 deserializer is improved over prior generations of Channel Link devices and offers higher bandwidth support and longer cable drive with three areas of enhancement. To increase bandwidth, the maximum clock rate is increased to 133 MHz and 8 serialized LVDS outputs are provided. Cable drive is enhanced with a user selectable pre-emphasis (on DS90CR485) feature that provides additional output current during transitions to counteract cable loading effects. Optional DC balancing on a cycle-to-cycle basis, is also provided to reduce ISI (Inter-Symbol Interference). With pre-emphasis and DC balancing, a low distortion eye-pattern is provided at the receiver end of the cable. A cable deskew capability has been added to deskew long cables of pair-to-pair skew. These three enhancements allow long cables to be driven.

The DS90CR486 is intended to be used with the DS90CR485 Channel Link Serializer. It is also backward compatible with serializers DS90CR481 and DS90CR483. The DS90CR486 is footprint compatible with the DS90CR484.

The chipset is an ideal solution to solve EMI and interconnect size problems for high-throughput point-to-point applications.

For more details, please refer to the section of this datasheet.

Descargar Ver vídeo con transcripción Video

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 7
Tipo Título Fecha
* Data sheet DS90CR486 133MHz 48-Bit Channel Link Deserializer (6.384 Gbps) datasheet (Rev. C) 05 mar 2013
Application note High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs 09 nov 2018
EVM User's guide 48-bit Channel Link Serializer Deserializer Evaluation Board 133MHz 26 ene 2012
Design guide Channel Link I Design Guide 29 mar 2007
Application note Multi-Drop Channel-Link Operation 04 oct 2004
White paper The Many Flavors of LVDS 01 feb 2002
Application note CHANNEL LINK Moving and Shaping Information In Point-To-Point Applications 05 oct 1998

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Herramienta de simulación

PSPICE-FOR-TI — PSpice® para herramienta de diseño y simulación de TI

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Herramienta de simulación

TINA-TI — Programa de simulación analógica basado en SPICE

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Guía del usuario: PDF
Encapsulado Pines Símbolos CAD, huellas y modelos 3D
QFP (NEZ) 100 Ultra Librarian

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos