Startseite Energiemanagement Spannungsreferenzen Shunt-Spannungsreferenzen

LM4040-N

AKTIV

Mikroenergie-Shunt-Präzisionsspannungsreferenz, 100 ppm/°C

Produktdetails

VO (V) 2, 2.046, 2.048, 2.5, 3, 4.096, 5, 8.192, 10 Initial accuracy (max) (%) 0.1, 0.2, 0.5, 1, 2 VO adj (min) (V) 2.048 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) Fixed Rating Catalog Temp coeff (max) (ppm/°C) 100, 150 Operating temperature range (°C) -40 to 85 Iout/Iz (max) (mA) 15
VO (V) 2, 2.046, 2.048, 2.5, 3, 4.096, 5, 8.192, 10 Initial accuracy (max) (%) 0.1, 0.2, 0.5, 1, 2 VO adj (min) (V) 2.048 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) Fixed Rating Catalog Temp coeff (max) (ppm/°C) 100, 150 Operating temperature range (°C) -40 to 85 Iout/Iz (max) (mA) 15
SOT-23 (DBZ) 3 6.9204 mm² 2.92 x 2.37 SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1 TO-92 (LP) 3 19.136 mm² 5.2 x 3.68
  • LM4040-N-Q1 AEC Q-100 qualified for automotive applications
    • Extended Grade 1: −40°C to +125°C, TA
    • Industrial Grade 3: −40°C to +85°C, TA
  • Small packages: SOT-23, TO-92, and SC70
  • No output capacitor required
  • Tolerates capacitive loads
  • Fixed reverse breakdown voltages of 2.048V, 2.5V, 3V, 4.096V, 5V, 8.192V, and 10V
  • Key specifications (2.5V LM4040-N)
    • Output voltage tolerance (A Grade, 25°C): ±0.1% (maximum)
    • Low output noise (10Hz to 10kHz): 35µVrms (typical)
    • Wide operating current range: 60µA to 15mA
    • Industrial temperature range: −40°C to +85°C
    • Extended temperature range: −40°C to +125°C
    • Low temperature coefficient: 100ppm/°C (maximum)
  • LM4040-N-Q1 AEC Q-100 qualified for automotive applications
    • Extended Grade 1: −40°C to +125°C, TA
    • Industrial Grade 3: −40°C to +85°C, TA
  • Small packages: SOT-23, TO-92, and SC70
  • No output capacitor required
  • Tolerates capacitive loads
  • Fixed reverse breakdown voltages of 2.048V, 2.5V, 3V, 4.096V, 5V, 8.192V, and 10V
  • Key specifications (2.5V LM4040-N)
    • Output voltage tolerance (A Grade, 25°C): ±0.1% (maximum)
    • Low output noise (10Hz to 10kHz): 35µVrms (typical)
    • Wide operating current range: 60µA to 15mA
    • Industrial temperature range: −40°C to +85°C
    • Extended temperature range: −40°C to +125°C
    • Low temperature coefficient: 100ppm/°C (maximum)

Designed for space-critical applications, the LM4040-N precision voltage reference is available in small SC70 and SOT-23 surface-mount package. The advanced design of the LM4040-N eliminates the need for an external stabilizing capacitor while maintaining stability with any capacitive load, thus making the LM4040-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.5V, 3V, 4.096V, 5V, 8.192V, and 10V. The minimum operating current increases from 60µA for the 2.5V LM4040-N to 100µA for the 10V LM4040-N. All versions have a maximum operating current of 15mA.

The LM4040-N uses a fuse and Zener-zap reverse breakdown voltage trim during wafer sort to make sure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance provide stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Also available is the LM4041-N with two reverse breakdown voltage versions: adjustable and 1.2V. See the LM4041-N data sheet (SNOS641).

Designed for space-critical applications, the LM4040-N precision voltage reference is available in small SC70 and SOT-23 surface-mount package. The advanced design of the LM4040-N eliminates the need for an external stabilizing capacitor while maintaining stability with any capacitive load, thus making the LM4040-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.5V, 3V, 4.096V, 5V, 8.192V, and 10V. The minimum operating current increases from 60µA for the 2.5V LM4040-N to 100µA for the 10V LM4040-N. All versions have a maximum operating current of 15mA.

The LM4040-N uses a fuse and Zener-zap reverse breakdown voltage trim during wafer sort to make sure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance provide stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Also available is the LM4041-N with two reverse breakdown voltage versions: adjustable and 1.2V. See the LM4041-N data sheet (SNOS641).

Herunterladen Video mit Transkript ansehen Video

Ähnliche Produkte, die für Sie interessant sein könnten

Selbe Funktionalität wie der verglichene Baustein bei gleicher Anschlussbelegung
LM4040 AKTIV Feste Spannung, 45 µA, Präzisions-MicroPower-Shunt-Spannungsreferenz For cost optimized designs
LM4050-N AKTIV Mikroenergie-Shunt-Präzisionsspannungsreferenz, 50 ppm/°C Better temperature coefficient

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 11
Typ Titel Datum
* Data sheet LM4040-N/-Q1 Precision Micropower Shunt Voltage Reference datasheet (Rev. L) 29 Jun 2024
Application note Voltage Reference Selection and Design Tips For Data Converters (Rev. B) PDF | HTML 09 Jan 2024
Application brief Using Voltage Supervisors in High Voltage Applications (Rev. B) PDF | HTML 20 Feb 2023
E-book Tips and tricks for designing with voltage references (Rev. A) 07 Mai 2021
E-book Voltage Supervisor and Reset ICs: Tips, Tricks and Basics 28 Jun 2019
Technical article How to use a voltage reference as a voltage regulator PDF | HTML 04 Dez 2018
Technical article Can I get that shunt reference to go, please? PDF | HTML 29 Feb 2016
Application note AN-1525 Single Supply Operation of the DAC0800 and DAC0802 (Rev. A) 22 Apr 2013
Application note TO-92 Packing Options / Ordering Instructions (Rev. A) 23 Jun 2010
Application note Implementing Single-Chip FPGA Power Solutions 21 Mär 2007
Application note Negative Buck Switching Regulator (using LM258x) 21 Mär 2007

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Evaluierungsplatine

TMDXEVM368 — Evaluierungsmodul TMS320DM36x

The TMS320DM36x Digital Video Evaluation Module (DVEVM) enables developers to start immediate evaluation of TI’s Digital Media (DMx) processors and begin building digital video applications such as IP security cameras, action cameras, drones, wearables, digital signage, video doorbells, and (...)

Benutzerhandbuch: PDF
Simulationsmodell

LM4040_NA10P0 PSpice Transient Model

SNOM420.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA10P0 TINA-TI Transient Reference Design

SNOM449.TSC (71 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA10P0 TINA-TI Transient Spice Model

SNOM448.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA10P0 Unencrypted PSpice Transient Model

SNOM495.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA2P048 PSpice Transient Model

SNOM394.ZIP (36 KB) - PSpice Model
Simulationsmodell

LM4040_NA2P048 TINA-TI Transient Reference Design

SNOM444.TSC (72 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA2P048 TINA-TI Transient Spice Model

SNOM445.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA2P048 Unencrypted PSpice Transient Model

SNOM551.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA2P5 PSpice Transient Model

SNOM403.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA2P5 TINA-TI Transient Spice Model

SNOM455.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA2P5 Transient TINA-TI Reference Design

SNOM454.TSC (72 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA2P5 Unencrypted PSpice Transient Model

SNOM526.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA3P0 PSpice Transient Model

SNOM423.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA3P0 TINA-TI Transient Reference Design

SNOM457.TSC (72 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA3P0 TINA-TI Transient Spice Model

SNOM456.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA3P0 Unencrypted PSpice Transient Model

SNOM547.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA4P096 PSpice Transient Model

SNOM410.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA4P096 TINA-TI Transient Reference Design

SNOM453.TSC (72 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA4P096 TINA-TI Transient Spice Model

SNOM452.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA4P096 Unencrypted PSpice Transient Model

SNOM505.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA5P0 PSpice Transient Model

SNOM405.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA5P0 TINA-TI Transient Reference Design

SNOM450.TSC (72 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA5P0 TINA-TI Transient Spice Model

SNOM451.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA5P0 Unencrypted PSpice Transient Model

SNOM500.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NA8P192 PSpice Transient Model

SNOM421.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NA8P192 TINA-TI Transient Reference Design

SNOM447.TSC (73 KB) - TINA-TI Reference Design
Simulationsmodell

LM4040_NA8P192 TINA-TI Transient Spice Model

SNOM446.ZIP (9 KB) - TINA-TI Spice Model
Simulationsmodell

LM4040_NA8P192 Unencrypted PSpice Transient Model

SNOM496.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB10P0 PSpice Transient Model

SNOM407.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB10P0 Unencrypted PSpice Transient Model

SNOM502.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB2P048 PSpice Transient Model

SNOM393.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB2P048 Unencrypted PSpice Transient Model

SNOM546.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB2P5 PSpice Transient Model

SNOM395.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB2P5 Unencrypted PSpice Transient Model

SNOM545.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB3P0 PSpice Transient Model

SNOM401.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB3P0 Unencrypted PSpice Transient Model

SNOM525.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB4P096 PSpice Transient Model

SNOM418.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB4P096 Unencrypted PSpice Transient Model

SNOM494.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB5P0 PSpice Transient Model

SNOM413.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB5P0 Unencrypted PSpice Transient Model

SNOM508.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NB8P192 PSpice Transient Model

SNOM408.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NB8P192 Unencrypted PSpice Transient Model

SNOM503.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC10P0 PSpice Transient Model

SNOM422.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC10P0 Unencrypted PSpice Transient Model

SNOM497.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC2P48 PSpice Transient Model

SNOM417.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC2P48 Unencrypted PSpice Transient Model

SNOM550.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC2P5 PSpice Transient Model

SNOM400.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC2P5 Unencrypted PSpice Transient Model

SNOM541.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC3P0 PSpice Transient Model

SNOM416.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC3P0 Unencrypted PSpice Transient Model

SNOM548.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC4P096 PSpice Transient Model

SNOM411.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC4P096 Unencrypted PSpice Transient Model

SNOM506.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC5P0 PSpice Transient Model

SNOM406.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC5P0 Unencrypted PSpice Transient Model

SNOM501.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NC8P192 PSpice Transient Model

SNOM412.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NC8P192 Unencrypted PSpice Transient Model

SNOM507.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND10P0 PSpice Transient Model

SNOM409.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND10P0 Unencrypted PSpice Transient Model

SNOM504.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND2P48 PSpice Transient Model

SNOM414.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND2P48 Unencrypted PSpice Transient Model

SNOM492.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND2P5 PSpice Transient Model

SNOM398.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND2P5 Unencrypted PSpice Transient Model

SNOM542.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND3P0 PSpice Transient Model

SNOM404.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND3P0 Unencrypted PSpice Transient Model

SNOM539.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND4P096 PSpice Transient Model

SNOM415.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND4P096 Unencrypted PSpice Transient Model

SNOM493.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND5P0 PSpice Transient Model (Rev. A)

SNOM419A.ZIP (102 KB) - PSpice Model
Simulationsmodell

LM4040_ND5P0 Unencrypted PSpice Transient Model (Rev. A)

SNOM499A.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_ND8P192 PSpice Transient Model

SNOM399.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_ND8P192 Unencrypted PSpice Transient Model

SNOM498.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NE2P048 PSpice Transient Model

SNOM397.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NE2P048 Unencrypted PSpice Transient Model

SNOM543.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NE2P5 PSpice Transient Model

SNOM396.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NE2P5 Unencrypted PSpice Transient Model

SNOM544.ZIP (1 KB) - PSpice Model
Simulationsmodell

LM4040_NE3P0 PSpice Transient Model

SNOM402.ZIP (25 KB) - PSpice Model
Simulationsmodell

LM4040_NE3P0 Unencrypted PSpice Transient Model

SNOM540.ZIP (1 KB) - PSpice Model
Berechnungstool

SHUNT-REFERENCE-CALC Shunt Reference Selector and Design Calculator

This tool guides the user through the design process for the TLx431 and LM40x0 family of shunt voltage references. This calculator will recommend resistance and capacitance values to optimally meet the user's desired specifications.
Unterstützte Produkte und Hardware

Unterstützte Produkte und Hardware

Produkte
Shunt-Spannungsreferenzen
ATL431 Einstellbarer Präzisions-Shunt-Regler, 2,5 V, mit niedrigem Ruhestrom ATL431LI Programmierbarer Low-IQ-Shunt-Regler in einem ultrakleinen DQN-Gehäuse ATL431LI-Q1 Programmierbarer Shunt-Regler für die Automobilindustrie, hohe Bandbreite, niedriger Ruhestrom (Ansc ATL432 Programmierbarer Präzisions-Shunt-Regler, 2,5 V ATL432LI Programmierbarer Shunt-Regler mit hoher Bandbreite und niedrigem IQ (Pinbelegung: RKA) ATL432LI-Q1 Programmierbarer Shunt-Regler für die Automobilindustrie, mit hoher Bandbreite und niedrigem Ruhe LM4030 Shunt-Spannungsreferenz mit extrem hoher Präzision LM4040 Feste Spannung, 45 µA, Präzisions-MicroPower-Shunt-Spannungsreferenz LM4040-N Mikroenergie-Shunt-Präzisionsspannungsreferenz, 100 ppm/°C LM4040-N-Q1 100-ppm/°C-Präzisions-Micropower-Shunt-Spannungsreferenz für die Automobilindustrie LM4040C25-EP Verbessertes Produkt – Shunt-Präzisionsspannungsreferenz, MicroPower 2,5 V, 0,5 % Genauigkeit LM4041-N Feste und einstellbare Präzisions-Micropower-Shunt-Spannungsreferenz, 45 µA LM4041-N-Q1 Micropower-Shunt-Präzisionsspannungsreferenz für die Automobilindustrie LM4041A12 Micropower-Shunt-Präzisionsspannungsreferenz, 1,2 V, 0,1 % Genauigkeit LM4041B Einstellbare Präzisions-Mikroenergie-Shunt-Spannungsreferenz mit 0,2 % Genauigkeit LM4041B12 Micropower-Shunt-Präzisionsspannungsreferenz, 1,2 V, 0,2 % Genauigkeit LM4041C Einstellbare Präzisions-Mikroenergie-Shunt-Spannungsreferenz mit 0,5 % Genauigkeit LM4041C12 Micropower-Shunt-Präzisionsspannungsreferenz, 1,2 V, 0,5 % Genauigkeit LM4041D Einstellbare Präzisions-Mikroenergie-Shunt-Spannungsreferenz mit 1% Genauigkeit LM4041D12 Micropower-Shunt-Präzisionsspannungsreferenz, 1,2 V, 1 % Genauigkeit LM4050-N Mikroenergie-Shunt-Präzisionsspannungsreferenz, 50 ppm/°C LM4050-N-Q1 50-ppm/°C-Präzisions-Micropower-Shunt-Spannungsreferenz für die Automobilindustrie LM4050QML-SP Strahlungsgehärtetete 2,5-V- oder 5-V-QMLV-Shunt-Spannungsreferenz LM4051-N Feste und einstellbare Präzisions-Micropower-Shunt-Spannungsreferenz LMV431 Einstellbarer Präzisions-Shunt-Regler, 1,5 % Genauigkeit, niedrige Spannung (1,24 V) LMV431A Einstellbarer Präzisions-Shunt-Regler, 1 % Genauigkeit, niedrige Spannung (1,24 V) LMV431B Einstellbarer Präzisions-Shunt-Regler, 0,5 % Genauigkeit, niedrige Spannung (1,24 V) TL431 Einstellbarer Präzisions-Shunt-Regler TL431-Q1 Einstellbarer Präzisions-Shunt-Regler für die Automobilindustrie (Pin-Layout (Steckerbelegung): K TL431C 2% Einstellbarer Präzisions-Shunt-Regler TL431LI Einstellbarer Präzisions-Shunt-Regler mit optimiertem Referenzstrom (Pin-Layout: KRA) TL431LI-Q1 Einstellbarer Präzisions-Shunt-Regler für die Automobilindustrie mit optimiertem Referenzstrom TL432 Einstellbarer Präzisions-Shunt-Regler (umgekehrte Pinbelegung) TL432-Q1 Einstellbarer Präzisions-Shunt-Regler für die Automobilindustrie (Steckerbelegung: RKA) TL432LI Einstellbarer Präzisions-Shunt-Regler mit optimiertem Referenzstrom (Pin-Layout: RKA) TL432LI-Q1 Einstellbarer Präzisions-Shunt-Regler für die Automobilindustrie mit optimiertem Referenzstrom TLA431 Vollständig kondensatorstabile, präzise programmierbare Referenz mit KRA-Pin-Layout TLA432 Vollständig kondensatorstabile, präzise programmierbare Referenz mit RKA-Pin-Layout TLV431 Einstellbarer Präzisions-Shunt-Regler, 1,5% Genauigkeit, niedrige Spannung TLV431A Einstellbarer Präzisions-Shunt-Regler, 1 % Genauigkeit, niedrige Spannung TLV431A-Q1 Einstellbarer Präzisions-Shunt-Regler, mit niedriger Spannung, für die Automobilindustrie TLV431B Einstellbarer Präzisions-Shunt-Regler, 0,5 % Genauigkeit, niedrige Spannung TLV431B-Q1 Einstellbarer Präzisions-Shunt-Regler, mit niedriger Spannung, für die Automobilindustrie TLVH431 Einstellbarer Präzisions-Shunt-Regler, 1,5 %, Niederspannung, breiter Betriebsstrom TLVH431A Einstellbarer Präzisions-Shunt-Regler, 1 %, Niederspannung, breiter Betriebsstrom TLVH431A-Q1 Einstellbarer Präzisions-Shunt-Regler, mit niedriger Spannung, für die Automobilindustrie TLVH431B Einstellbarer Präzisions-Shunt-Regler, 0,5 %, Niederspannung, breiter Betriebsstrom TLVH431B-EP Optimierter einstellbarer Präzisions-Shunt-Regler, 0,5 %, Niederspannung breiter Betriebsstrom TLVH431B-Q1 Einstellbarer Präzisions-Shunt-Regler für die Automobilindustrie mit niedriger Spannung (Reverse Pin TLVH432 Einstellbarer Präzisions-Shunt-Regler, 1,5 %, Niederspannung, breiter Betriebsstrom (umgekehrte Pinb TLVH432A Einstellbarer Präzisions-Shunt-Regler, 1 %, Niederspannung, breiter Betriebsstrom (umgekehrte Pinbel TLVH432B Einstellbarer Präzisions-Shunt-Regler, 0,5 %, Niederspannung, breiter Betriebsstrom (umgekehrte Pinb
Universal-Operationsverstärker
TLV4313 Vierfach-RRIO-Operationsverstärker, 5,5 V, 1 MHz, niedriger Ruhestrom (65 μA) TLV4314 Vierfach-RRIO-Operationsverstärker, 5,5 V, 3 MHz TLV4314-Q1 Vierfach-RRIO-Operationsverstärker für die Automobilindustrie, 5,5 V, 3 MHz TLV4316 Vierfach-RRIO-Operationsverstärker, 5,5 V, 10 MHz TLV4316-Q1 Vierfach-RRIO-Operationsverstärker für die Automobilindustrie, 5,5 V, 10 MHz TLV4379 Vierfach-RRIO-Operationsverstärker, 5,5 V, 90 kHz, niedriger Ruhestrom (4 μA)
Präzisionsoperationsverstärker (Vos < 1 mV)
TLV4333 Vierfach-, rauscharmer RRIO-CMOS-Operationsverstärker mit 350 kHz für kostensensitive Systeme TLV4376 Vierfach-Präzisions-Operationsverstärker mit 5,5 MHz, 100 µV Offset, 8 nV/√Hz Rauschen, 815 µA Leist TLV4387 Vierfach-Operationsverstärker mit extrem hoher Präzision (10 μV), Nulldrift (0,01 μV/°C) und geringe
Berechnungstool

SHUNT_VOLTAGE_REFERENCE_RESISTOR_CALCULATOR Shunt Voltage Reference External Resistor Quick Start Calculator

This external resistor quick-start calculator tool lets you easily calculate valid external resistor values relative to voltage reference, supply and load-current bounds. With these inputs, you can instantly view the resulting calculations and use the color-coded indications to understand (...)

Unterstützte Produkte und Hardware

Unterstützte Produkte und Hardware

Produkte
Die- & Wafer-Services
LM336-2.5-MIL Shunt-Spannungsreferenz
Shunt-Spannungsreferenzen
ATL431 Einstellbarer Präzisions-Shunt-Regler, 2,5 V, mit niedrigem Ruhestrom LM136-2.5-N Spannungsreferenzdiode LM136-5.0 Referenzdiode, 5,0V LM136-5.0QML Referenzdiode, 5,0V LM136A-2.5QML Referenzdiode, 2,5 V LM136A-2.5QML-SP Strahlungsgehärtetete 2,5-V-QMLV-Shunt-Spannungsreferenz LM136A-5.0QML Referenzdiode, 5,0V LM185-1.2-N Micropower-Spannungsreferenzdiode LM185-1.2QML Micropower-Spannungsreferenzdiode LM185-1.2QML-SP Strahlungsgehärtetete 1,2-V-QMLV-Shunt-Spannungsreferenz LM185-2.5-N Micropower-Spannungsreferenzdiode LM185-2.5QML Micropower-Spannungsreferenzdiode LM185-2.5QML-SP Shunt-Spannungsreferenz für Weltraumanwendungen (QMLV), 2,5 V LM185-ADJ Einstellbare MicroPower-Spannungsreferenz LM185QML Einstellbare MicroPower-Spannungsreferenz LM285-1.2 MicroPower-Spannungsreferenz 1,235 V, -40°C bis +85°C LM285-1.2-N MicroPower-Spannungsreferenzdiode 1,235 V, -40 bis +85°C LM285-2.5 MicroPower-Spannungsreferenz 2,5 V, -40°C bis +85°C LM285-2.5-N Micropower-Spannungsreferenzdiode 2,5 V, -40 bis +85°C LM285-ADJ Einstellbare 85-Grad-Celsius-Mikroenergie-Spannungsreferenz LM336-2.5 Integrierter Referenz-Schaltkreis, 0 bis 70 °C, 2,5 V LM336-2.5-N Spannungsreferenzdiode LM336-5.0 Referenzdiode, 5 V LM385-1.2 MicroPower-Spannungsreferenz 1,235 V, 2 %, 0 °C bis 70 °C LM385-1.2-MIL Micropower-Spannungsreferenz LM385-1.2-N MicroPower-Spannungsreferenzdiode 1,235 V, 0 bis 70 °C LM385-2.5 Micropower-Spannungsreferenz 2,5 V, 2 %, 70 °C LM385-2.5-N Micropower-Spannungsreferenzdiode 2,5 V, 0 bis 70 °C LM385-ADJ Einstellbare 70-Grad-Celsius, Mikroenergie-Spannungsreferenz LM4030 Shunt-Spannungsreferenz mit extrem hoher Präzision LM4040 Feste Spannung, 45 µA, Präzisions-MicroPower-Shunt-Spannungsreferenz LM4040-N Mikroenergie-Shunt-Präzisionsspannungsreferenz, 100 ppm/°C LM4040-N-Q1 100-ppm/°C-Präzisions-Micropower-Shunt-Spannungsreferenz für die Automobilindustrie LM4041-N Feste und einstellbare Präzisions-Micropower-Shunt-Spannungsreferenz, 45 µA LM4041-N-Q1 Micropower-Shunt-Präzisionsspannungsreferenz für die Automobilindustrie LM4050-N Mikroenergie-Shunt-Präzisionsspannungsreferenz, 50 ppm/°C LM4050-N-Q1 50-ppm/°C-Präzisions-Micropower-Shunt-Spannungsreferenz für die Automobilindustrie LM4050QML-SP Strahlungsgehärtetete 2,5-V- oder 5-V-QMLV-Shunt-Spannungsreferenz LM4051-N Feste und einstellbare Präzisions-Micropower-Shunt-Spannungsreferenz LM431 Einstellbarer Präzisions-Zener-Shunt-Regler mit 2 %, 1 % oder 0,5 % Genauigkeit LM4431 Micropower-Shunt-Spannungsreferenz LMV431 Einstellbarer Präzisions-Shunt-Regler, 1,5 % Genauigkeit, niedrige Spannung (1,24 V) LMV431A Einstellbarer Präzisions-Shunt-Regler, 1 % Genauigkeit, niedrige Spannung (1,24 V) LMV431B Einstellbarer Präzisions-Shunt-Regler, 0,5 % Genauigkeit, niedrige Spannung (1,24 V)
Stromreferenzen
LM134 Einstellbare Stromquelle mit 3 Anschlüssen LM234 Einstellbare Stromquelle, 100 °C, mit 3 Anschlüssen LM334 Einstellbare Stromquelle mit 3 Anschlüssen, 0 bis 70°C
Simulationstool

PSPICE-FOR-TI — PSpice® für TI Design-und Simulationstool

PSpice® für TI ist eine Design- und Simulationsumgebung, welche Sie dabei unterstützt, die Funktionalität analoger Schaltungen zu evaluieren. Diese voll ausgestattete Design- und Simulationssuite verwendet eine analoge Analyse-Engine von Cadence®. PSpice für TI ist kostenlos erhältlich und (...)
Referenzdesigns

TIDA-00420 — ADC-basierter, digital isolierter 16-Kanal-AC/DC-Wandler mit Binäreingang und großem Eingangsspannun

Dieses Referenzdesign zeigt eine kostenoptimierte und skalierbare ADC-basierte AC/DC-Architektur mit Binäreingangsmodul (BIM) und verstärkter Isolierung. Die 16 Kanäle eines 10- oder 12-Bit-SAR-ADCs werden zur Erfassung mehrerer Binäreingänge verwendet. Die Operationsverstärker halten nicht nur die (...)
Design guide: PDF
Schaltplan: PDF
Referenzdesigns

TIDA-00810 — Referenzdesign zur Messung von Wechselspannung und Strom in Schutzrelais mit Delta-Sigma-Chipdiagnos

Das Referenzdesign TIDA-00810 misst präzise die Leistung von Analogeingängen und enthält eine Chip-Diagnose, die hilft, Ausfälle von Stromversorgungssystemen frühzeitig zu erkennen. Dazu werden ein hochpräzises analoges Frontend (AFE) zur Messung von Wechselspannung und -strom und ein (...)
Design guide: PDF
Schaltplan: PDF
Referenzdesigns

TIDA-00835 — Hochpräzise ±0,5 % Strom- und isolierte Spannungsmessung – Referenzdesign mit 24-Bit Delta-Sigma ADC

The TIDA-00835 reference design allows for accurate voltage and current measurement using a bipolar input configuration by incorporating a four- channel, 24-bit simultaneously-sampling differential input Delta-Sigma ADC over wide dynamic range. The ADC is configured to measure ±2.5 V bipolar (...)
Design guide: PDF
Schaltplan: PDF
Referenzdesigns

PMP21943 — Referenzdesign für synchronen Abwärts-/Aufwärtswandler mit 48 V/25 A und negativen zu positiven Wert

This reference design is a negative-to-positive synchronous buck-boost converter for power amplifier applications. The circuit is powered from the nominal -48-V system source to provide an output voltage of +48 V at 25 A. The design uses two dual synchronous boost controllers for 4-phase operation (...)
Test report: PDF
Schaltplan: PDF
Referenzdesigns

PMP21867 — Referenzdesign für synchronen Abwärts-/Aufwärtswandler mit 12 V/100 A und negativen zu positiven Wer

This reference design is a negative-to-positive synchronous buck-boost converter for power amplifier applications. The circuit is powered from the nominal -48-V system source to provide an output voltage of +12 V at 100 A. The design uses two dual synchronous boost controllers for 4-phase (...)
Test report: PDF
Schaltplan: PDF
Referenzdesigns

PMP15035 — Referenzdesign für 1000 V, bidirektionalen 12-V-bis-12-V-Wandler

This reference design is a dual-channel, bidirectional converter suitable for 12-V to 12-V, dual-battery system, automotive applications. This reference design has a wide input range (3 V to 40 V) and could give full load (1kW) in the input voltage from 9V to 18V by using two LM5170-Q1 (...)
Test report: PDF
Schaltplan: PDF
Referenzdesigns

TIDA-00777 — Aktiver Integrator für Rogowski-Spule Referenzdesign mit verbesserter Genauigkeit für Relais und Lei

Dieses Referenzdesign eines aktiven Integrators deckt einen großen Eingangsstrombereich für Rogowski-Spulen mit Genauigkeit, Linearität, Stabilität und Wiederholbarkeit ab. Der Integrator verwendet einen Präzisionsverstärker mit sehr geringem Offset und Temperaturdrift. Es werden zwei (...)
Design guide: PDF
Schaltplan: PDF
Referenzdesigns

TIDA-00912 — Shunt-basiertes Referenzdesign für Hochstrommessungen (200 A) mit verstärktem Isolationsverstärker

This isolated current measurement reference design uses external shunts, reinforced isolation amplifiers and isolated power supply. The shunt voltage is limited to 25-mV max. This reduces power dissipation in the shunt to enable a high-current measurement range up to 200 A. Shunt voltage is (...)
Design guide: PDF
Schaltplan: PDF
Referenzdesigns

TIDA-00445 — Shunt-basiertes 200 A-Peak-Strommessungs-Referenzdesign mit Isolationsverstärker

This reference design is for isolated current measurement using a shunt and isolated amplifier. By limiting the shunt voltage to 25 mV, this design is able to reduce power dissipation in the shunt and achieve a high-current measurement range of up to 200 A. Shunt voltage is further amplified (...)
Design guide: PDF
Schaltplan: PDF
Gehäuse Pins CAD-Symbole, Footprints und 3D-Modelle
SOT-23 (DBZ) 3 Ultra Librarian
SOT-SC70 (DCK) 5 Ultra Librarian
TO-92 (LP) 3 Ultra Librarian

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos