JAJA675B November   2018  – October 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   商標
  2. 1グランド配線の最適化
    1. 1.1 よく使用される用語 / 接続
    2. 1.2 グランド・プレーンの使用
      1. 1.2.1 2 層基板技術
    3. 1.3 共通の問題
      1. 1.3.1 容量性および誘導性結合
      2. 1.3.2 同相および差動ノイズ
    4. 1.4 EMC に関する考慮事項
  3. 2熱の概要
    1. 2.1 PCB の熱伝導および対流
    2. 2.2 連続的な最上層のサーマル・パッド
    3. 2.3 銅厚
    4. 2.4 サーマル・ビアの接続
    5. 2.5 サーマル・ビアの幅
    6. 2.6 熱設計のまとめ
  4. 3ビア
    1. 3.1 ビアの電流容量
    2. 3.2 ビアのレイアウトに関する推奨事項
      1. 3.2.1 複数ビアのレイアウト
      2. 3.2.2 ビアの配置
  5. 4一般的な配線手法
  6. 5バルクおよびバイパス・コンデンサの配置
    1. 5.1 バルク・コンデンサの配置
    2. 5.2 チャージ・ポンプ・コンデンサ
    3. 5.3 バイパス / デカップリング・コンデンサの配置
      1. 5.3.1 電源の近く
      2. 5.3.2 電力段の近く
      3. 5.3.3 スイッチ電流源の近く
      4. 5.3.4 電流センス・アンプの近く
      5. 5.3.5 電圧レギュレータの近く
  7. 6MOSFET の配置と電力段の配線
    1. 6.1 一般的なパワー MOSFET パッケージ
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8 ピン SON
    2. 6.2 MOSFET のレイアウト構成
    3. 6.3 電力段のレイアウト設計
      1. 6.3.1 スイッチ・ノード
      2. 6.3.2 大電流ループ経路
      3. 6.3.3 VDRAIN センス・ピン
  8. 7電流センス・アンプの配線
    1. 7.1 シングル・ハイサイド電流シャント
    2. 7.2 シングル・ローサイド電流シャント
    3. 7.3 2 相および 3 相電流シャント・アンプ
    4. 7.4 部品選定
    5. 7.5 配置
    6. 7.6 配線
    7. 7.7 便利なツール (ネット・タイと差動ペア)
    8. 7.8 入力および出力フィルタ
    9. 7.9 必須事項と禁止事項
  9. 8関連資料
  10. 9改訂履歴

銅厚

連続的で幅広いプレーンを使用すると熱抵抗が下がりますが、プレーンの銅の厚さも PCB の熱性能に対する非常に重要な考慮事項です。PCB 上の銅のめっき厚を増やすことで、プレーンの実効的な熱抵抗が下がります。銅の厚さとプレーンの面積の関係を計算するにはEquation1 を使います。

Equation1. θCu = (1 / λCu × 長さ) / 面積

長さと幅が 1cm、めっき厚が 1 オンス (0.0035cm) と仮定すると、ドライバと横方向につながった銅プレーンの熱抵抗はEquation2 で概算されます。

Equation2. θCu = (1 / λCu × 長さ) / 面積 = (25℃ cm/W × 1cm) / 1cm × 0.0035cm = 71.4℃/W

銅の厚さを 2 オンス (0.007cm) 銅に倍増した場合、Equation2 と同じ寸法でドライバと横方向につながった銅プレーンの熱抵抗はEquation3 で計算されます。

Equation3. θCu = (1 / λCu × 長さ) / 面積 = (0.25℃ cm/W × 1cm) / 1cm × 0.007cm = 35.7℃/W

銅の厚さを 2 倍にした場合、同じ大きさのプレーンの熱抵抗は半分になります。ドライバに接続されたグランド・プレーンの銅を厚くすると、基板上に大きな温度差を生じさせないでデバイスから周囲空気に熱を効率よく逃がすことができます。