Inicio Gestión de la energía Referencias de tensión Referencias de tensión en derivación

LM4050-N

ACTIVO

Referencia de tensión de derivación de micropotencia y precisión de 50 ppm/°C

Detalles del producto

VO (V) 2.048, 2.5, 4.096, 4.1, 5, 8.192, 10 Initial accuracy (max) (%) 0.1, 0.2, 0.5 VO adj (min) (V) 2.048 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) Fixed Rating Catalog Temp coeff (max) (ppm/°C) 50 Operating temperature range (°C) -40 to 125 Iout/Iz (max) (mA) 15
VO (V) 2.048, 2.5, 4.096, 4.1, 5, 8.192, 10 Initial accuracy (max) (%) 0.1, 0.2, 0.5 VO adj (min) (V) 2.048 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) Fixed Rating Catalog Temp coeff (max) (ppm/°C) 50 Operating temperature range (°C) -40 to 125 Iout/Iz (max) (mA) 15
SOT-23 (DBZ) 3 6.9204 mm² 2.92 x 2.37
  • Small Package: SOT-23
  • No Output Capacitor Required
  • Tolerates Capacitive Loads
  • Fixed Reverse Breakdown Voltages of 2.048 V,
    2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V
  • Key Specifications (LM4050-N)
    • Output Voltage Tolerance (A Grade, 25°C)
      ±0.1% (Maximum)
    • Low Output Noise (10 Hz to 10 kHz) 41 µVrms
      (Typical)
    • Wide Operating Current Range 60 µA to 15
      mA
    • Industrial Temperature Range –40°C to 85°C
    • Extended Temperature Range –40°C to 125°C
    • Low Temperature Coefficient 50 ppm/°C (max)
    • LM4050-N-Q1 is AEC-Q100 Grade 1 Qualified
      and are Manufactured on an Automotive
      Grade Flow
  • Small Package: SOT-23
  • No Output Capacitor Required
  • Tolerates Capacitive Loads
  • Fixed Reverse Breakdown Voltages of 2.048 V,
    2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V
  • Key Specifications (LM4050-N)
    • Output Voltage Tolerance (A Grade, 25°C)
      ±0.1% (Maximum)
    • Low Output Noise (10 Hz to 10 kHz) 41 µVrms
      (Typical)
    • Wide Operating Current Range 60 µA to 15
      mA
    • Industrial Temperature Range –40°C to 85°C
    • Extended Temperature Range –40°C to 125°C
    • Low Temperature Coefficient 50 ppm/°C (max)
    • LM4050-N-Q1 is AEC-Q100 Grade 1 Qualified
      and are Manufactured on an Automotive
      Grade Flow

Ideal for space-critical applications, the LM4050-N precision voltage reference is available in the sub-miniature (3 mm × 1.3 mm) SOT-23 surface-mount package. The LM4050-N design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 µA for the LM4050-N-2.0 to 100 µA for the LM4050-N-10.0. All versions have a maximum operating current of 15 mA.

The LM4050-N utilizes fuse and Zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

All grades and voltage options of the LM4050-N are available in both an industrial temperature range (–40°C and 85°C) and an extended temperature range (–40°C and 125°C).

Ideal for space-critical applications, the LM4050-N precision voltage reference is available in the sub-miniature (3 mm × 1.3 mm) SOT-23 surface-mount package. The LM4050-N design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 µA for the LM4050-N-2.0 to 100 µA for the LM4050-N-10.0. All versions have a maximum operating current of 15 mA.

The LM4050-N utilizes fuse and Zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

All grades and voltage options of the LM4050-N are available in both an industrial temperature range (–40°C and 85°C) and an extended temperature range (–40°C and 125°C).

Descargar Ver vídeo con transcripción Video

Productos similares que pueden interesarle

open-in-new Comparar alternativas
Misma funcionalidad con diferente configuración de pines que el dispositivo comparado
LM4030 ACTIVO Referencia de tensión de derivación de precisión ultraalta Enhanced accuracy (0.05%) with lower temperature drift (10 ppm/°C)

Documentación técnica

star =Principal documentación para este producto seleccionada por TI
No se encontraron resultados. Borre su búsqueda y vuelva a intentarlo.
Ver todo 3
Tipo Título Fecha
* Data sheet LM4050-N/-Q1 Precision Micropower Shunt Voltage Reference datasheet (Rev. G) PDF | HTML 30 sep 2015
Application note Voltage Reference Selection and Design Tips For Data Converters (Rev. B) PDF | HTML 09 ene 2024
E-book Voltage Supervisor and Reset ICs: Tips, Tricks and Basics 28 jun 2019

Diseño y desarrollo

Para conocer los términos adicionales o los recursos necesarios, haga clic en cualquier título de abajo para ver la página de detalles cuando esté disponible.

Modelo de simulación

LM4050-NA10P0 PSpice Transient Model

SNOM381.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NA10P0 Unencrypted PSpice Transient Model

SNOM510.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NA2P048 PSpice Transient Model

SNOM374.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NA2P048 Unencrypted PSpice Transient Model

SNOM537.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NA2P5 PSpice Transient Model (Rev. A)

SNOM376A.ZIP (130 KB) - PSpice Model
Modelo de simulación

LM4050-NA2P5 Unencrypted PSpice Transient Model (Rev. A)

SNOM521A.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NA4P096 PSpice Transient Model

SNOM387.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NA4P096 Unencrypted PSpice Transient Model

SNOM535.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NA5P0 PSpice Transient Model

SNOM388.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NA5P0 Unencrypted PSpice Transient Model

SNOM516.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NA8P192 PSpice Transient Model

SNOM383.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NA8P192 Unencrypted PSpice Transient Model

SNOM512.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NB10P0 PSpice Transient Model

SNOM386.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NB10P0 Unencrypted PSpice Transient Model

SNOM515.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NB2P048 PSpice Transient Model

SNOM377.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NB2P048 Unencrypted PSpice Transient Model

SNOM538.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NB2P5 PSpice Transient Model

SNOM375.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NB2P5 Unencrypted PSpice Transient Model

SNOM519.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NB4P096 Unencrypted PSpice Transient Model Package (Rev. A)

SNOM385A.ZIP (23 KB) - PSpice Model
Modelo de simulación

LM4050-NB5P0 PSpice Transient Model

SNOM382.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NB5P0 Unencrypted PSpice Transient Model

SNOM511.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NB8P192 PSpice Transient Model

SNOM384.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NB8P192 Unencrypted PSpice Transient Model

SNOM513.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC10P0 PSpice Transient Model

SNOM379.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC10P0 Unencrypted PSpice Transient Model

SNOM518.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC2P048 PSpice Transient Model

SNOM373.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC2P048 Unencrypted PSpice Transient Model

SNOM536.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC2P5 PSpice Transient Model

SNOM372.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC2P5 Unencrypted PSpice Transient Model

SNOM517.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC4P096 PSpice Transient Model

SNOM378.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC4P096 Unencrypted PSpice Transient Model

SNOM534.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC5P0 PSpice Transient Model

SNOM389.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC5P0 Unencrypted PSpice Transient Model

SNOM520.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050-NC8P192 PSpice Transient Model

SNOM380.ZIP (25 KB) - PSpice Model
Modelo de simulación

LM4050-NC8P192 Unencrypted PSpice Transient Model

SNOM509.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050A25 PSpice Transient Model

SNOM326.ZIP (51 KB) - PSpice Model
Modelo de simulación

LM4050A25 Unencrypted PSpice Transient Model

SNOM666.ZIP (1 KB) - PSpice Model
Modelo de simulación

LM4050_NA10P0 TINA-TI Reference Design

SNOM439.TSC (71 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA10P0 TINA-TI Transient Spice Model

SNOM438.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NA2P048 TINA-TI Transient Reference Design

SNOM441.TSC (72 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA2P048 TINA-TI Transient Spice Model

SNOM440.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NA2P5 TINA-TI Reference Design

SNOM437.TSC (72 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA2P5 TINA-TI Transient Spice Model

SNOM436.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NA4P096 TINA-TI Transient Reference Design

SNOM435.TSC (72 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA4P096 TINA-TI Transient Spice Model

SNOM434.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NA5P0 TINA-TI Reference Design

SNOM432.TSC (72 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA5P0 TINA-TI Transient Spice Model

SNOM433.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NA8P192 TINA-TI Transient Reference Design

SNOM443.TSC (73 KB) - TINA-TI Reference Design
Modelo de simulación

LM4050_NA8P192 TINA-TI Transient Spice Model

SNOM442.ZIP (8 KB) - TINA-TI Spice Model
Modelo de simulación

LM4050_NB4P096 Unencrypted PSpice Transient Model

SNOM514.ZIP (1 KB) - PSpice Model
Herramienta de cálculo

SHUNT-REFERENCE-CALC Shunt Reference Selector and Design Calculator

This tool guides the user through the design process for the TLx431 and LM40x0 family of shunt voltage references. This calculator will recommend resistance and capacitance values to optimally meet the user's desired specifications.
Productos y hardware compatibles

Productos y hardware compatibles

Productos
Referencias de tensión en derivación
ATL431 Regulador de derivación de precisión ajustable de bajo IQ de 2,5 V ATL431LI Regulador de derivación programable de bajo IQ en un encapsulado DQN ultrapequeño ATL431LI-Q1 Regulador de derivación programable de baja IQ, ancho de banda alto automotriz (configuración de pin ATL432 Regulador de derivación de precisión programable de 2,5 V ATL432LI Regulador de derivación programable de bajo IQ, de ancho de banda alto (configuración de pines: RKA) ATL432LI-Q1 Regulador de derivación programable de bajo IQ, de ancho de banda alto para automoción (configura LM4030 Referencia de tensión de derivación de precisión ultraalta LM4040 Referencia de tensión de derivación de micropotencia, precisión, 45 µA y tensión fija LM4040-N Referencia de tensión de derivación de micropotencia y precisión de 100 ppm/°C LM4040-N-Q1 Referencia de tensión de derivación de micropotencia y precisión de 100 ppm/°C para automoción LM4040C25-EP Referencia de tensión de derivación de micropotencia con una precisión de 2.5 V de producto mejorado LM4041-N Referencia de tensión de derivación de micropotencia de precisión de 45 µA fija y ajustable LM4041-N-Q1 Referencia de tensión de derivación de micropotencia de precisión para automoción LM4041A12 Referencia de tensión de derivación de micropotencia con una precisión de 1.2 V y 0.1 % LM4041B Referencia de tensión de derivación de micropotencia ajustable con una precisión de 0.2 % LM4041B12 Referencia de tensión de derivación de micropotencia con una precisión de 1.2 V y 0.2 % LM4041C Referencia de tensión de derivación de micropotencia ajustable con una precisión de 0.5 % LM4041C12 Referencia de tensión de derivación de micropotencia con una precisión de 1.2 V y 0.5 % LM4041D Referencia de tensión de derivación de micropotencia ajustable con una precisión de 1% LM4041D12 Referencia de tensión de derivación de micropotencia con una precisión de 1.2 V y 1 % LM4050-N Referencia de tensión de derivación de micropotencia y precisión de 50 ppm/°C LM4050-N-Q1 Referencia de tensión de derivación de micropotencia y precisión de 50 ppm/°C para automoción LM4050QML-SP Referencia de tensión en derivación QMLV de 2.5 V o 5 V resistente a la radiación LM4051-N Referencia de tensión de derivación de micropotencia de precisión fija y ajustable LMV431 Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 1,5 %. LMV431A Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 1 %. LMV431B Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 0,5 %. TL431 Regulador de derivación de precisión ajustable TL431-Q1 Regulador automotriz de derivación de precisión ajustable (configuración de pines: KRA) TL431C Regulador de derivación de precisión ajustable de 2 % TL431LI Regulador de derivación de precisión ajustable con corriente de referencia optimizada (configuración TL431LI-Q1 Regulador de derivación de precisión ajustable para automoción con corriente de referencia optimizad TL432 Regulador de derivación de precisión ajustable (pines de inversión) TL432-Q1 Regulador automotriz de derivación de precisión ajustable (configuración de pines: RKA) TL432LI Regulador de derivación de precisión ajustable con corriente de referencia optimizada (configuración TL432LI-Q1 Regulador de derivación de precisión ajustable para automoción con corriente de referencia optimizad TLA431 Referencia programable de precisión estable totalmente capacitiva con disposición de pines KRA TLA432 Referencia programable de precisión estable totalmente capacitiva con disposición de pines RKA TLV431 Regulador de derivación de precisión ajustable, de baja tensión y precisión del 1.5% TLV431A Regulador de derivación de precisión ajustable, de baja tensión y precisión del 1 % TLV431A-Q1 Regulador automotriz de derivación de precisión ajustable, de baja tensión TLV431B Regulador de derivación de precisión ajustable, de baja tensión y precisión del 0.5 % TLV431B-Q1 Regulador de derivación con precisión ajustable de baja tensión para automoción TLVH431 Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 1.5 % de baja TLVH431A Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 1 % de baja t TLVH431A-Q1 Regulador de derivación con precisión ajustable de baja tensión para automoción TLVH431B Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 0.5 % de baja TLVH431B-EP Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 0.5 % de baja TLVH431B-Q1 Regulador de derivación de precisión ajustable de baja tensión (configuración de pines invertida) pa TLVH432 Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 1.5 % de baja TLVH432A Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 1 % de baja t TLVH432B Regulador de derivación de precisión ajustable de corriente de funcionamiento amplio y 0.5 % de baja
Amplificadores de propósito general
TLV4313 Amplificador operacional RRIO cuádruple de 5.5 V y 1 MHz, corriente quiescente baja (65 μA) TLV4314 Amplificador operacional RRIO cuádruple de 5.5 V y 3 MHz TLV4314-Q1 Amplificador operacional RRIO cuádruple de calidad automotriz, de 5.5 V y 3 MHz TLV4316 Amplificador operacional RRIO cuádruple de 5.5 V y 10 MHz TLV4316-Q1 Amplificador operacional RRIO cuádruple de calidad automotriz, de 5.5 V y 10 MHz TLV4379 Amplificador operacional RRIO cuádruple de 5.5 V y 90 kHz, corriente quiescente baja (4 μA)
Amplificadores operacionales de precisión (Vox < 1 mV)
TLV4333 Amplificador operacional cuádruple CMOS, de 350 kHz, bajo nivel de ruido, RRIO, para sistemas de cos TLV4376 Amplificadores operacionales cuádruples de precisión y potencia de 815 µA, 5.5 MHz, offset de 100 µV TLV4387 Amplificador operacional cuádruple de ultraalta precisión (10 μV), deriva cero (0,01 μV/°C) y baja c
Herramienta de cálculo

SHUNT_VOLTAGE_REFERENCE_RESISTOR_CALCULATOR Shunt Voltage Reference External Resistor Quick Start Calculator

This external resistor quick-start calculator tool lets you easily calculate valid external resistor values relative to voltage reference, supply and load-current bounds. With these inputs, you can instantly view the resulting calculations and use the color-coded indications to understand (...)

Productos y hardware compatibles

Productos y hardware compatibles

Productos
Servicios de troqueles y obleas
LM336-2.5-MIL Referencia de tensión de derivación
Referencias de tensión en derivación
ATL431 Regulador de derivación de precisión ajustable de bajo IQ de 2,5 V LM136-2.5-N Diodo de referencia de tensión LM136-5.0 Diodo de referencia de 5.0 V LM136-5.0QML Diodo de referencia de 5.0 V LM136A-2.5QML Diodo de referencia de 2.5 V LM136A-2.5QML-SP Referencia de tensión en derivación QMLV de 2.5 V resistente a la radiación LM136A-5.0QML Diodo de referencia de 5.0 V LM185-1.2-N Diodo de referencia de tensión de micropotencia LM185-1.2QML Diodo de referencia de tensión de micropotencia LM185-1.2QML-SP Referencia de tensión en derivación QMLV de 1.2 V resistente a la radiación LM185-2.5-N Diodo de referencia de tensión de micropotencia LM185-2.5QML Diodo de referencia de tensión de micropotencia LM185-2.5QML-SP Referencia de tensión de derivación de 2.5 V QMLV de grado espacial LM185-ADJ Referencia de tensión de micropotencia ajustable LM185QML Referencia de tensión de micropotencia ajustable LM285-1.2 Referencia de tensión de micropotencia de 1.235 V y -40 °C a + 85 °C LM285-1.2-N Diodo de referencia de tensión de micropotencia de 1.235 V y de –40 °C a 85 °C LM285-2.5 Referencia de tensión de micropotencia de 2.5 V y de –40 °C a +85 °C LM285-2.5-N Diodo de referencia de tensión de micropotencia de 2.5 V y de –40 °C a 85 °C LM285-ADJ Referencia de tensión de micropotencia ajustable de 85 °C LM336-2.5 Circuito de referencia integrado de 2.5 V y 0 °C a 70 °C LM336-2.5-N Diodo de referencia de tensión LM336-5.0 Diodo de referencia de 5 V LM385-1.2 Referencia de tensión de micropotencia de 1.235 V, 2 % y 0 °C a 70 °C LM385-1.2-MIL Referencia de tensión de micropotencia LM385-1.2-N Diodo de referencia de tensión de micropotencia de 1.235 V y de 0 °C a 70 °C LM385-2.5 Referencia de tensión de micropotencia de 2.5 V, 2 % y 70 °C LM385-2.5-N Diodo de referencia de tensión de micropotencia de 2.5 V y de 0 °C a 70 °C LM385-ADJ Referencia de tensión de micropotencia ajustable de 70 °C LM4030 Referencia de tensión de derivación de precisión ultraalta LM4040 Referencia de tensión de derivación de micropotencia, precisión, 45 µA y tensión fija LM4040-N Referencia de tensión de derivación de micropotencia y precisión de 100 ppm/°C LM4040-N-Q1 Referencia de tensión de derivación de micropotencia y precisión de 100 ppm/°C para automoción LM4041-N Referencia de tensión de derivación de micropotencia de precisión de 45 µA fija y ajustable LM4041-N-Q1 Referencia de tensión de derivación de micropotencia de precisión para automoción LM4050-N Referencia de tensión de derivación de micropotencia y precisión de 50 ppm/°C LM4050-N-Q1 Referencia de tensión de derivación de micropotencia y precisión de 50 ppm/°C para automoción LM4050QML-SP Referencia de tensión en derivación QMLV de 2.5 V o 5 V resistente a la radiación LM4051-N Referencia de tensión de derivación de micropotencia de precisión fija y ajustable LM431 Regulador de derivación Zener de precisión ajustable con una precisión del 2 %, 1 % o 0.5 % LM4431 Referencia de tensión de derivación de micropotencia LMV431 Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 1,5 %. LMV431A Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 1 %. LMV431B Regulador de derivación de precisión ajustable de bajo voltaje (1,24 V), 0,5 %.
Referencias de corriente
LM134 Fuente de corriente ajustable de 3 terminales LM234 Fuente de corriente ajustable de 100 °C y 3 pines LM334 Fuente de corriente ajustable de 0 °C a 70 °C y 3 pines
Herramienta de simulación

PSPICE-FOR-TI — PSpice® para herramienta de diseño y simulación de TI

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Encapsulado Pines Símbolos CAD, huellas y modelos 3D
SOT-23 (DBZ) 3 Ultra Librarian

Pedidos y calidad

Información incluida:
  • RoHS
  • REACH
  • Marcado del dispositivo
  • Acabado de plomo/material de la bola
  • Clasificación de nivel de sensibilidad a la humedad (MSL) / reflujo máximo
  • Estimaciones de tiempo medio entre fallas (MTBF)/fallas en el tiempo (FIT)
  • Contenido del material
  • Resumen de calificaciones
  • Monitoreo continuo de confiabilidad
Información incluida:
  • Lugar de fabricación
  • Lugar de ensamblaje

Soporte y capacitación

Foros de TI E2E™ con asistencia técnica de los ingenieros de TI

El contenido lo proporcionan “tal como está” TI y los colaboradores de la comunidad y no constituye especificaciones de TI. Consulte los términos de uso.

Si tiene preguntas sobre la calidad, el paquete o el pedido de productos de TI, consulte el soporte de TI. ​​​​​​​​​​​​​​

Videos